Convolution theorem for the windowed linear canonical transform

IF 0.7 3区 数学 Q2 MATHEMATICS
Wen-Biao Gao
{"title":"Convolution theorem for the windowed linear canonical transform","authors":"Wen-Biao Gao","doi":"10.1080/10652469.2024.2400698","DOIUrl":null,"url":null,"abstract":"In this paper, we obtain the convolution theorems for the windowed linear canonical transform (WLCT). According to the WLCT of a convolution of two functions is the product of their respective WLCT...","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Transforms and Special Functions","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10652469.2024.2400698","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we obtain the convolution theorems for the windowed linear canonical transform (WLCT). According to the WLCT of a convolution of two functions is the product of their respective WLCT...
带窗线性典型变换的卷积定理
在本文中,我们得到了有窗线性正则变换(WLCT)的卷积定理。根据两个函数卷积的 WLCT 是它们各自 WLCT 的乘积...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
20.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Integral Transforms and Special Functions belongs to the basic subjects of mathematical analysis, the theory of differential and integral equations, approximation theory, and to many other areas of pure and applied mathematics. Although centuries old, these subjects are under intense development, for use in pure and applied mathematics, physics, engineering and computer science. This stimulates continuous interest for researchers in these fields. The aim of Integral Transforms and Special Functions is to foster further growth by providing a means for the publication of important research on all aspects of the subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信