Variational Approximation for a Non-Isothermal Coupled Phase-Field System: Structure-Preservation & Nonlinear Stability

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Aaron Brunk, Oliver Habrich, Timileyin David Oyedeji, Yangyiwei Yang, Bai-Xiang Xu
{"title":"Variational Approximation for a Non-Isothermal Coupled Phase-Field System: Structure-Preservation & Nonlinear Stability","authors":"Aaron Brunk, Oliver Habrich, Timileyin David Oyedeji, Yangyiwei Yang, Bai-Xiang Xu","doi":"10.1515/cmam-2023-0274","DOIUrl":null,"url":null,"abstract":"A Cahn–Hilliard–Allen–Cahn phase-field model coupled with a heat transfer equation, particularly with full non-diagonal mobility matrices, is studied. After reformulating the problem with respect to the inverse of temperature, we proposed and analysed a structure-preserving approximation for the semi-discretisation in space and then a fully discrete approximation using conforming finite elements and time-stepping methods. We prove structure-preserving property and discrete stability using relative entropy methods for the semi-discrete and fully discrete case. The theoretical results are illustrated by numerical experiments.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"48 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0274","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A Cahn–Hilliard–Allen–Cahn phase-field model coupled with a heat transfer equation, particularly with full non-diagonal mobility matrices, is studied. After reformulating the problem with respect to the inverse of temperature, we proposed and analysed a structure-preserving approximation for the semi-discretisation in space and then a fully discrete approximation using conforming finite elements and time-stepping methods. We prove structure-preserving property and discrete stability using relative entropy methods for the semi-discrete and fully discrete case. The theoretical results are illustrated by numerical experiments.
非等温耦合相场系统的变分法:结构保持与非线性稳定性
我们研究了与传热方程耦合的 Cahn-Hilliard-Allen-Cahn 相场模型,特别是全非对角流动矩阵。在根据温度倒数对问题进行重新表述后,我们提出并分析了空间半离散化的结构保持近似方法,然后使用符合有限元和时间步进方法提出了完全离散的近似方法。我们使用相对熵方法证明了半离散和全离散情况下的结构保持特性和离散稳定性。数值实验对理论结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信