Dirac series of E7(7)

IF 0.8 2区 数学 Q2 MATHEMATICS
Yi-Hao Ding, Chao-Ping Dong, Lin Wei
{"title":"Dirac series of E7(7)","authors":"Yi-Hao Ding, Chao-Ping Dong, Lin Wei","doi":"10.1007/s11856-024-2658-1","DOIUrl":null,"url":null,"abstract":"<p>This paper classifies all the Dirac series (that is, irreducible unitary representations having non-zero Dirac cohomology) of <i>E</i><sub>7(7)</sub>. Enhancing the Helgason–Johnson bound in 1969 for the group <i>E</i><sub>7(7)</sub> is one key ingredient. Our calculation partially supports Vogan’s fundamental parallelepiped (FPP) conjecture. As applications, when passing to Dirac index, we continue to find cancellation between the even part and the odd part of Dirac cohomology. Moreover, for the first time, we find Dirac series whose spin lowest <i>K</i>-types have multiplicities.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2658-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper classifies all the Dirac series (that is, irreducible unitary representations having non-zero Dirac cohomology) of E7(7). Enhancing the Helgason–Johnson bound in 1969 for the group E7(7) is one key ingredient. Our calculation partially supports Vogan’s fundamental parallelepiped (FPP) conjecture. As applications, when passing to Dirac index, we continue to find cancellation between the even part and the odd part of Dirac cohomology. Moreover, for the first time, we find Dirac series whose spin lowest K-types have multiplicities.

E7(7) 的狄拉克级数
本文对 E7(7) 的所有狄拉克数列(即具有非零狄拉克同调的不可还原单元表示)进行了分类。其中一个关键因素是增强了 1969 年对 E7(7) 群的 Helgason-Johnson 约束。我们的计算部分支持了沃根的基本平行四边形(FPP)猜想。作为应用,当传递到狄拉克指数时,我们继续发现狄拉克同调的偶数部分和奇数部分之间的抵消。此外,我们首次发现了自旋最低 K 型具有乘数的狄拉克级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信