UNIT: Unsupervised Online Instance Segmentation through Time

Corentin Sautier, Gilles Puy, Alexandre Boulch, Renaud Marlet, Vincent Lepetit
{"title":"UNIT: Unsupervised Online Instance Segmentation through Time","authors":"Corentin Sautier, Gilles Puy, Alexandre Boulch, Renaud Marlet, Vincent Lepetit","doi":"arxiv-2409.07887","DOIUrl":null,"url":null,"abstract":"Online object segmentation and tracking in Lidar point clouds enables\nautonomous agents to understand their surroundings and make safe decisions.\nUnfortunately, manual annotations for these tasks are prohibitively costly. We\ntackle this problem with the task of class-agnostic unsupervised online\ninstance segmentation and tracking. To that end, we leverage an instance\nsegmentation backbone and propose a new training recipe that enables the online\ntracking of objects. Our network is trained on pseudo-labels, eliminating the\nneed for manual annotations. We conduct an evaluation using metrics adapted for\ntemporal instance segmentation. Computing these metrics requires\ntemporally-consistent instance labels. When unavailable, we construct these\nlabels using the available 3D bounding boxes and semantic labels in the\ndataset. We compare our method against strong baselines and demonstrate its\nsuperiority across two different outdoor Lidar datasets.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Online object segmentation and tracking in Lidar point clouds enables autonomous agents to understand their surroundings and make safe decisions. Unfortunately, manual annotations for these tasks are prohibitively costly. We tackle this problem with the task of class-agnostic unsupervised online instance segmentation and tracking. To that end, we leverage an instance segmentation backbone and propose a new training recipe that enables the online tracking of objects. Our network is trained on pseudo-labels, eliminating the need for manual annotations. We conduct an evaluation using metrics adapted for temporal instance segmentation. Computing these metrics requires temporally-consistent instance labels. When unavailable, we construct these labels using the available 3D bounding boxes and semantic labels in the dataset. We compare our method against strong baselines and demonstrate its superiority across two different outdoor Lidar datasets.
单元:通过时间进行无监督在线实例分割
激光雷达点云中的在线物体分割和跟踪可帮助自主代理了解周围环境并做出安全决策。为了解决这个问题,我们采用了类无关的无监督在线实例分割和跟踪任务。为此,我们利用实例分割骨干网,提出了一种新的训练方法,实现了对物体的在线跟踪。我们的网络在伪标签上进行训练,无需人工标注。我们使用适用于时态实例分割的指标进行了评估。计算这些指标需要系统一致的实例标签。如果没有,我们就使用数据集中可用的三维边界框和语义标签来构建标签。我们将我们的方法与强大的基线进行了比较,并在两个不同的室外激光雷达数据集上证明了其优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信