{"title":"Intervals of posets of a zero-divisor graph","authors":"John D. LaGrange","doi":"10.1515/ms-2024-0061","DOIUrl":null,"url":null,"abstract":"This article is concerned with bounded partially ordered sets <jats:italic>P</jats:italic> such that for every <jats:italic>p</jats:italic> ∈ <jats:italic>P</jats:italic> ∖ {1} there exists <jats:italic>q</jats:italic> ∈ <jats:italic>P</jats:italic> ∖ {0} such that 0 is the only lower bound of {<jats:italic>p</jats:italic>, <jats:italic>q</jats:italic>}. The posets <jats:italic>P</jats:italic> such that <jats:italic>P</jats:italic> ≅ <jats:italic>Q</jats:italic> if and only if <jats:italic>P</jats:italic> and <jats:italic>Q</jats:italic> have isomorphic zero-divisor graphs are completely characterized. In the case of finite posets, this result is generalized by proving that posets with isomorphic zero-divisor graphs form an interval under the partial order given by <jats:italic>P</jats:italic> ≲ <jats:italic>Q</jats:italic> if and only if there exists a bijective poset-homomorphism <jats:italic>P</jats:italic> → <jats:italic>Q</jats:italic>. In particular, the singleton intervals correspond to the posets that are completely determined by their zero-divisor graphs. These results are obtained by exploring universal and couniversal orderings with respect to posets that have isomorphic zero-divisor graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2024-0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article is concerned with bounded partially ordered sets P such that for every p ∈ P ∖ {1} there exists q ∈ P ∖ {0} such that 0 is the only lower bound of {p, q}. The posets P such that P ≅ Q if and only if P and Q have isomorphic zero-divisor graphs are completely characterized. In the case of finite posets, this result is generalized by proving that posets with isomorphic zero-divisor graphs form an interval under the partial order given by P ≲ Q if and only if there exists a bijective poset-homomorphism P → Q. In particular, the singleton intervals correspond to the posets that are completely determined by their zero-divisor graphs. These results are obtained by exploring universal and couniversal orderings with respect to posets that have isomorphic zero-divisor graphs.