Intervals of posets of a zero-divisor graph

Pub Date : 2024-08-14 DOI:10.1515/ms-2024-0061
John D. LaGrange
{"title":"Intervals of posets of a zero-divisor graph","authors":"John D. LaGrange","doi":"10.1515/ms-2024-0061","DOIUrl":null,"url":null,"abstract":"This article is concerned with bounded partially ordered sets <jats:italic>P</jats:italic> such that for every <jats:italic>p</jats:italic> ∈ <jats:italic>P</jats:italic> ∖ {1} there exists <jats:italic>q</jats:italic> ∈ <jats:italic>P</jats:italic> ∖ {0} such that 0 is the only lower bound of {<jats:italic>p</jats:italic>, <jats:italic>q</jats:italic>}. The posets <jats:italic>P</jats:italic> such that <jats:italic>P</jats:italic> ≅ <jats:italic>Q</jats:italic> if and only if <jats:italic>P</jats:italic> and <jats:italic>Q</jats:italic> have isomorphic zero-divisor graphs are completely characterized. In the case of finite posets, this result is generalized by proving that posets with isomorphic zero-divisor graphs form an interval under the partial order given by <jats:italic>P</jats:italic> ≲ <jats:italic>Q</jats:italic> if and only if there exists a bijective poset-homomorphism <jats:italic>P</jats:italic> → <jats:italic>Q</jats:italic>. In particular, the singleton intervals correspond to the posets that are completely determined by their zero-divisor graphs. These results are obtained by exploring universal and couniversal orderings with respect to posets that have isomorphic zero-divisor graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2024-0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article is concerned with bounded partially ordered sets P such that for every pP ∖ {1} there exists qP ∖ {0} such that 0 is the only lower bound of {p, q}. The posets P such that PQ if and only if P and Q have isomorphic zero-divisor graphs are completely characterized. In the case of finite posets, this result is generalized by proving that posets with isomorphic zero-divisor graphs form an interval under the partial order given by PQ if and only if there exists a bijective poset-homomorphism PQ. In particular, the singleton intervals correspond to the posets that are completely determined by their zero-divisor graphs. These results are obtained by exploring universal and couniversal orderings with respect to posets that have isomorphic zero-divisor graphs.
分享
查看原文
零因子图的正集区间
本文关注有界部分有序集合 P,对于每一个 p∈P ∖ {1} 存在 q∈P ∖ {0} ,使得 0 是 {p, q} 的唯一下界。当且仅当 P 和 Q 具有同构的零分维图形时,P ≅ Q 的正集 P 才具有完全的特征。在有限正集的情况下,通过证明具有同构零因子图的正集在 P ≲ Q 给定的偏序下形成一个区间,当且仅当存在一个双射正集同构 P → Q 时,这一结果得到了推广。这些结果是通过探索与具有同构零分因子图的正集有关的普遍排序和反普遍排序得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信