Generalized discrete Grüss and related results with applications

Pub Date : 2024-08-14 DOI:10.1515/ms-2024-0065
Saad Ihsan Butt, Josip Pečarić, Sanja Tipurić-Spužević
{"title":"Generalized discrete Grüss and related results with applications","authors":"Saad Ihsan Butt, Josip Pečarić, Sanja Tipurić-Spužević","doi":"10.1515/ms-2024-0065","DOIUrl":null,"url":null,"abstract":"Grüss inequality is subject of interest for many authors due to its effectiveness in predicting bounds in several quadrature problems. In the present article, we give weighted treatment of the discrete Čebyšev and Grüss type inequalities pertaining two <jats:italic>n</jats:italic>-tuples of real numbers in which the bounding constants are mobilised with bounding sequences of real numbers. As an application estimations of discrete Ostrowski type inequalities are provided. Finally, by practicing obtained results along with Jensen’s difference, a wide range of estimations are formalised by considering Jensen-Grüss differences.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2024-0065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Grüss inequality is subject of interest for many authors due to its effectiveness in predicting bounds in several quadrature problems. In the present article, we give weighted treatment of the discrete Čebyšev and Grüss type inequalities pertaining two n-tuples of real numbers in which the bounding constants are mobilised with bounding sequences of real numbers. As an application estimations of discrete Ostrowski type inequalities are provided. Finally, by practicing obtained results along with Jensen’s difference, a wide range of estimations are formalised by considering Jensen-Grüss differences.
分享
查看原文
广义离散格吕斯及相关结果与应用
由于格律斯不等式能有效预测若干正交问题中的界限,因此受到许多学者的关注。在本文中,我们对涉及两个 n 组实数的离散 Čebyšev 和 Grüss 型不等式进行了加权处理,其中界常数是用实数的界序列调动的。作为应用,提供了离散奥斯特洛夫斯基式不等式的估计。最后,通过将所获得的结果与詹森差分相结合,考虑到詹森-格律斯差分,对各种估计进行了形式化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信