Equable parallelograms on the Eisenstein lattice

IF 0.9 3区 数学 Q2 MATHEMATICS
Christian Aebi, Grant Cairns
{"title":"Equable parallelograms on the Eisenstein lattice","authors":"Christian Aebi, Grant Cairns","doi":"10.1515/ms-2024-0071","DOIUrl":null,"url":null,"abstract":"This paper studies equable parallelograms whose vertices lie on the Eisenstein lattice. Using Rosenberger’s Theorem on generalised Markov equations, we show that the set of these parallelograms forms naturally an infinite tree, all of whose vertices have degree 4, bar the root which has degree 3. This study naturally complements the authors’ previous study of equable parallelograms whose vertices lie on the integer lattice.","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Slovaca","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2024-0071","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies equable parallelograms whose vertices lie on the Eisenstein lattice. Using Rosenberger’s Theorem on generalised Markov equations, we show that the set of these parallelograms forms naturally an infinite tree, all of whose vertices have degree 4, bar the root which has degree 3. This study naturally complements the authors’ previous study of equable parallelograms whose vertices lie on the integer lattice.
爱森斯坦网格上的等边平行四边形
本文研究顶点位于爱森斯坦网格上的可等平行四边形。利用关于广义马尔可夫方程的罗森伯格定理,我们证明了这些平行四边形的集合自然形成了一棵无穷树,其所有顶点的阶数都是 4,只有根顶点的阶数是 3。这项研究自然补充了作者之前对顶点位于整数网格上的可等平行四边形的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematica Slovaca
Mathematica Slovaca 数学-数学
CiteScore
2.10
自引率
6.20%
发文量
74
审稿时长
6-12 weeks
期刊介绍: Mathematica Slovaca, the oldest and best mathematical journal in Slovakia, was founded in 1951 at the Mathematical Institute of the Slovak Academy of Science, Bratislava. It covers practically all mathematical areas. As a respectful international mathematical journal, it publishes only highly nontrivial original articles with complete proofs by assuring a high quality reviewing process. Its reputation was approved by many outstanding mathematicians who already contributed to Math. Slovaca. It makes bridges among mathematics, physics, soft computing, cryptography, biology, economy, measuring, etc.  The Journal publishes original articles with complete proofs. Besides short notes the journal publishes also surveys as well as some issues are focusing on a theme of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信