{"title":"Equable parallelograms on the Eisenstein lattice","authors":"Christian Aebi, Grant Cairns","doi":"10.1515/ms-2024-0071","DOIUrl":null,"url":null,"abstract":"This paper studies equable parallelograms whose vertices lie on the Eisenstein lattice. Using Rosenberger’s Theorem on generalised Markov equations, we show that the set of these parallelograms forms naturally an infinite tree, all of whose vertices have degree 4, bar the root which has degree 3. This study naturally complements the authors’ previous study of equable parallelograms whose vertices lie on the integer lattice.","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":"112 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Slovaca","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2024-0071","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies equable parallelograms whose vertices lie on the Eisenstein lattice. Using Rosenberger’s Theorem on generalised Markov equations, we show that the set of these parallelograms forms naturally an infinite tree, all of whose vertices have degree 4, bar the root which has degree 3. This study naturally complements the authors’ previous study of equable parallelograms whose vertices lie on the integer lattice.
期刊介绍:
Mathematica Slovaca, the oldest and best mathematical journal in Slovakia, was founded in 1951 at the Mathematical Institute of the Slovak Academy of Science, Bratislava. It covers practically all mathematical areas. As a respectful international mathematical journal, it publishes only highly nontrivial original articles with complete proofs by assuring a high quality reviewing process. Its reputation was approved by many outstanding mathematicians who already contributed to Math. Slovaca. It makes bridges among mathematics, physics, soft computing, cryptography, biology, economy, measuring, etc. The Journal publishes original articles with complete proofs. Besides short notes the journal publishes also surveys as well as some issues are focusing on a theme of current interest.