Nonparametric conditional survival function estimation and plug-in bandwidth selection with multiple covariates

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Test Pub Date : 2024-08-31 DOI:10.1007/s11749-024-00945-7
Dimitrios Bagkavos, Montserrat Guillen, Jens P. Nielsen
{"title":"Nonparametric conditional survival function estimation and plug-in bandwidth selection with multiple covariates","authors":"Dimitrios Bagkavos, Montserrat Guillen, Jens P. Nielsen","doi":"10.1007/s11749-024-00945-7","DOIUrl":null,"url":null,"abstract":"<p>The present research provides two methodological advances, simulation evidence and a real data analysis, all contributing to the area of local linear survival function estimation and bandwidth selection. The first contribution is the development of a double smoothed local linear survival function estimator which admits an arbitrary number of covariates and the analytic establishment of its asymptotic properties. The second contribution is the efficient implementation of the estimator in practice. This is achieved by developing an automatic plug-in smoothing parameter selector which optimizes the estimator’s performance in all coordinate directions. The traditional problem of vectorization of higher-order derivatives which lead to increasingly intractable matrix algebraic expressions is addressed here by introducing an alternative vectorization that exploits the analytic relationships between the functionals involved. This yields simpler, tractable and efficient in terms of computing time expressions which greatly facilitate the implementation of the rule in practice. The analytic study of the rule’s rate of convergence shows that in contrast to the traditional cross validation approach, the proposed bandwidth selector is functional even for a large number of covariates. The benefits of all methodological advances are illustrated with the analysis of a motivating real-world dataset on credit risk.</p>","PeriodicalId":51189,"journal":{"name":"Test","volume":"5 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Test","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11749-024-00945-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The present research provides two methodological advances, simulation evidence and a real data analysis, all contributing to the area of local linear survival function estimation and bandwidth selection. The first contribution is the development of a double smoothed local linear survival function estimator which admits an arbitrary number of covariates and the analytic establishment of its asymptotic properties. The second contribution is the efficient implementation of the estimator in practice. This is achieved by developing an automatic plug-in smoothing parameter selector which optimizes the estimator’s performance in all coordinate directions. The traditional problem of vectorization of higher-order derivatives which lead to increasingly intractable matrix algebraic expressions is addressed here by introducing an alternative vectorization that exploits the analytic relationships between the functionals involved. This yields simpler, tractable and efficient in terms of computing time expressions which greatly facilitate the implementation of the rule in practice. The analytic study of the rule’s rate of convergence shows that in contrast to the traditional cross validation approach, the proposed bandwidth selector is functional even for a large number of covariates. The benefits of all methodological advances are illustrated with the analysis of a motivating real-world dataset on credit risk.

Abstract Image

带有多个协变量的非参数条件生存函数估计和插件带宽选择
本研究提供了两种方法论进展、模拟证据和真实数据分析,它们都有助于局部线性生存函数估计和带宽选择领域。第一个贡献是开发了一种允许任意数量协变量的双平滑局部线性生存函数估计器,并对其渐近特性进行了分析。第二个贡献是在实践中有效实施该估计器。这是通过开发一种自动插件平滑参数选择器来实现的,它能优化估计器在所有坐标方向上的性能。传统的高阶导数矢量化问题会导致矩阵代数表达式越来越难处理,这里通过引入另一种矢量化方法,利用相关函数之间的解析关系,解决了这一问题。这样可以得到更简单、可控和高效的计算时间表达式,极大地促进了该规则在实际中的应用。对该规则收敛率的分析研究表明,与传统的交叉验证方法不同,所提出的带宽选择器即使对大量协变量也是有效的。通过分析现实世界中有关信贷风险的数据集,可以说明所有方法进步的益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Test
Test 数学-统计学与概率论
CiteScore
2.20
自引率
7.70%
发文量
41
审稿时长
>12 weeks
期刊介绍: TEST is an international journal of Statistics and Probability, sponsored by the Spanish Society of Statistics and Operations Research. English is the official language of the journal. The emphasis of TEST is placed on papers containing original theoretical contributions of direct or potential value in applications. In this respect, the methodological contents are considered to be crucial for the papers published in TEST, but the practical implications of the methodological aspects are also relevant. Original sound manuscripts on either well-established or emerging areas in the scope of the journal are welcome. One volume is published annually in four issues. In addition to the regular contributions, each issue of TEST contains an invited paper from a world-wide recognized outstanding statistician on an up-to-date challenging topic, including discussions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信