{"title":"Polygonal functional calculus for operators with finite peripheral spectrum","authors":"Oualid Bouabdillah, Christian Le Merdy","doi":"10.1007/s11856-024-2632-y","DOIUrl":null,"url":null,"abstract":"<p>Let <i>T</i>: <i>X</i> → <i>X</i> be a bounded operator on Banach space, whose spectrum <i>σ</i>(<i>T</i>) is included in the closed unit disc <span>\\(\\overline{\\mathbb{D}}\\)</span>. Assume that the peripheral spectrum <span>\\(\\sigma(T)\\cap\\mathbb{T}\\)</span> is finite and that <i>T</i> satisfies a resolvent estimate</p><span>$$\\Vert(z-T)^{-1}\\Vert\\lesssim\\max\\{\\vert z-\\xi\\vert^{-1}:\\xi\\in\\sigma(T)\\cap\\mathbb{T}\\},\\ \\ \\ \\ z\\in\\overline{\\mathbb{D}}^{c}.$$</span><p>We prove that <i>T</i> admits a bounded polygonal functional calculus, that is, an estimate ∥<i>ϕ</i>(<i>T</i>)∥ ≲ sup{∣ϕ(<i>z</i>)∣: <i>z</i> ∈ Δ} for some polygon Δ ⊂ ⅅ and all polynomials <i>ϕ</i>, in each of the following two cases: (i) either <i>X</i> = <i>L</i><sup><i>p</i></sup> for some 1 < <i>p</i> < ∞, and <i>T</i>: <i>L</i><sup><i>p</i></sup> → <i>L</i><sup><i>p</i></sup> is a positive contraction; or (ii) <i>T</i> is polynomially bounded and for all <span>\\(\\xi\\in\\sigma(T)\\cap\\mathbb{T}\\)</span>, there exists a neighborhood <span>\\(\\cal{V}\\)</span> of <i>ξ</i> such that the set <span>\\(\\{(\\xi-z)(z-T)^{-1}:z\\in\\cal{V}\\cap\\overline{\\mathbb{D}}^{c}\\}\\)</span> is <i>R</i>-bounded (here <i>X</i> is arbitrary). Each of these two results extends a theorem of de Laubenfels concerning polygonal functional calculus on Hilbert space. Our investigations require the introduction, for any finite set <span>\\(E\\subset\\mathbb{T}\\)</span>, of a notion of Ritt<sub><i>E</i></sub> operator which generalizes the classical notion of Ritt operator. We study these Ritt<sub><i>E</i></sub> operators and their natural functional calculus.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2632-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let T: X → X be a bounded operator on Banach space, whose spectrum σ(T) is included in the closed unit disc \(\overline{\mathbb{D}}\). Assume that the peripheral spectrum \(\sigma(T)\cap\mathbb{T}\) is finite and that T satisfies a resolvent estimate
We prove that T admits a bounded polygonal functional calculus, that is, an estimate ∥ϕ(T)∥ ≲ sup{∣ϕ(z)∣: z ∈ Δ} for some polygon Δ ⊂ ⅅ and all polynomials ϕ, in each of the following two cases: (i) either X = Lp for some 1 < p < ∞, and T: Lp → Lp is a positive contraction; or (ii) T is polynomially bounded and for all \(\xi\in\sigma(T)\cap\mathbb{T}\), there exists a neighborhood \(\cal{V}\) of ξ such that the set \(\{(\xi-z)(z-T)^{-1}:z\in\cal{V}\cap\overline{\mathbb{D}}^{c}\}\) is R-bounded (here X is arbitrary). Each of these two results extends a theorem of de Laubenfels concerning polygonal functional calculus on Hilbert space. Our investigations require the introduction, for any finite set \(E\subset\mathbb{T}\), of a notion of RittE operator which generalizes the classical notion of Ritt operator. We study these RittE operators and their natural functional calculus.
让 T: X → X 是巴纳赫空间上的有界算子,其谱 σ(T) 包含在封闭的单位圆盘 \(\overline\{mathbb{D}}\) 中。假设外围谱 \(\sigma(T)\cap\mathbb{T})是有限的,并且 T 满足 resolvent estimate$\Vert(z-T)^{-1}\Vert\lesssim\max\{vert z-\xi\vert^{-1}:\xi\in\sigma(T)\cap\mathbb{T}\},\\z\in\overline\mathbb{D}}^{c}.$$We prove that T admits a bounded polygonal functional calculus, that is, an estimate ∥j(T)∥ ≲ sup{∣j(z)∣:z ∈ Δ} 对于某个多边形 Δ ⊂ ⅅ 和所有多项式 ϕ,在以下两种情况中的每一种:(i) X = Lp 为某个 1 < p < ∞,且 T:Lp → Lp 是正收缩;或者 (ii) T 是多项式有界的,并且对于所有 \(\xi\in\sigma(T)\cap\mathbb{T}\), ξ 的邻域 \(\cal{V}\) 存在,使得集合 \(\{(\xi-z)(z-T)^{-1}:zin\cal{V}\cap\overline{\mathbb{D}}^{c}\}) 是 R 有界的(这里 X 是任意的)。这两个结果都扩展了德-劳本费尔斯关于希尔伯特空间上多边形函数微积分的定理。我们的研究需要为任意有限集 \(E\subset\mathbb{T}\)引入一个 RittE 算子的概念,它概括了经典的 Ritt 算子概念。我们将研究这些 RittE 算子及其自然函数微积分。
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.