An Inexact Majorized Proximal Alternating Direction Method of Multipliers for Diffusion Tensors

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hong Zhu, Michael K. Ng
{"title":"An Inexact Majorized Proximal Alternating Direction Method of Multipliers for Diffusion Tensors","authors":"Hong Zhu, Michael K. Ng","doi":"10.1137/23m1607015","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1795-1819, September 2024. <br/> Abstract.This paper focuses on studying the denoising problem for positive semidefinite fourth-order tensor field estimation from noisy observations. The positive semidefiniteness of the tensor is preserved by mapping the tensor to a 6-by-6 symmetric positive semidefinite matrix where its matrix rank is less than or equal to three. For denoising, we propose to use an anisotropic discrete total variation function over the tensor field as the regularization term. We propose an inexact majorized proximal alternating direction method of multipliers for such a nonconvex and nonsmooth optimization problem. We show that an [math]-stationary solution of the resulting optimization problem can be found in no more than [math] iterations. The effectiveness of the proposed model and algorithm is tested using multifiber diffusion weighted imaging data, and our numerical results demonstrate that our method outperforms existing methods in terms of denoising performance.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1607015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1795-1819, September 2024.
Abstract.This paper focuses on studying the denoising problem for positive semidefinite fourth-order tensor field estimation from noisy observations. The positive semidefiniteness of the tensor is preserved by mapping the tensor to a 6-by-6 symmetric positive semidefinite matrix where its matrix rank is less than or equal to three. For denoising, we propose to use an anisotropic discrete total variation function over the tensor field as the regularization term. We propose an inexact majorized proximal alternating direction method of multipliers for such a nonconvex and nonsmooth optimization problem. We show that an [math]-stationary solution of the resulting optimization problem can be found in no more than [math] iterations. The effectiveness of the proposed model and algorithm is tested using multifiber diffusion weighted imaging data, and our numerical results demonstrate that our method outperforms existing methods in terms of denoising performance.
扩散张量的非精确大数近端交替方向乘法
SIAM 影像科学期刊》,第 17 卷第 3 期,第 1795-1819 页,2024 年 9 月。 摘要:本文重点研究了从噪声观测中估计正半有限四阶张量场的去噪问题。通过将张量映射为矩阵秩小于或等于 3 的 6×6 对称正半有限矩阵,张量的正半有限性得以保留。对于去噪,我们建议使用张量场上的各向异性离散总变异函数作为正则化项。对于这种非凸、非光滑的优化问题,我们提出了一种不精确的近似交替方向乘法。我们证明,不超过 [math] 次迭代就能找到优化问题的 [math] 固定解。我们使用多纤维扩散加权成像数据测试了所提模型和算法的有效性,数值结果表明我们的方法在去噪性能方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信