{"title":"An Inexact Majorized Proximal Alternating Direction Method of Multipliers for Diffusion Tensors","authors":"Hong Zhu, Michael K. Ng","doi":"10.1137/23m1607015","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1795-1819, September 2024. <br/> Abstract.This paper focuses on studying the denoising problem for positive semidefinite fourth-order tensor field estimation from noisy observations. The positive semidefiniteness of the tensor is preserved by mapping the tensor to a 6-by-6 symmetric positive semidefinite matrix where its matrix rank is less than or equal to three. For denoising, we propose to use an anisotropic discrete total variation function over the tensor field as the regularization term. We propose an inexact majorized proximal alternating direction method of multipliers for such a nonconvex and nonsmooth optimization problem. We show that an [math]-stationary solution of the resulting optimization problem can be found in no more than [math] iterations. The effectiveness of the proposed model and algorithm is tested using multifiber diffusion weighted imaging data, and our numerical results demonstrate that our method outperforms existing methods in terms of denoising performance.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"39 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1607015","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1795-1819, September 2024. Abstract.This paper focuses on studying the denoising problem for positive semidefinite fourth-order tensor field estimation from noisy observations. The positive semidefiniteness of the tensor is preserved by mapping the tensor to a 6-by-6 symmetric positive semidefinite matrix where its matrix rank is less than or equal to three. For denoising, we propose to use an anisotropic discrete total variation function over the tensor field as the regularization term. We propose an inexact majorized proximal alternating direction method of multipliers for such a nonconvex and nonsmooth optimization problem. We show that an [math]-stationary solution of the resulting optimization problem can be found in no more than [math] iterations. The effectiveness of the proposed model and algorithm is tested using multifiber diffusion weighted imaging data, and our numerical results demonstrate that our method outperforms existing methods in terms of denoising performance.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.