{"title":"Restoration Guarantee of Image Inpainting via Low Rank Patch Matrix Completion","authors":"Jian-Feng Cai, Jae Kyu Choi, Jingyang Li, Guojian Yin","doi":"10.1137/23m1614456","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1879-1908, September 2024. <br/> Abstract.In recent years, patch-based image restoration approaches have demonstrated superior performance compared to conventional variational methods. This paper delves into the mathematical foundations underlying patch-based image restoration methods, with a specific focus on establishing restoration guarantees for patch-based image inpainting, leveraging the assumption of self-similarity among patches. To accomplish this, we present a reformulation of the image inpainting problem as structured low-rank matrix completion, accomplished by grouping image patches with potential overlaps. By making certain incoherence assumptions, we establish a restoration guarantee, given that the number of samples exceeds the order of [math], where [math] denotes the size of the image and [math] represents the sum of ranks for each group of image patches. Through our rigorous mathematical analysis, we provide valuable insights into the theoretical foundations of patch-based image restoration methods, shedding light on their efficacy and offering guidelines for practical implementation.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"5 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1614456","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1879-1908, September 2024. Abstract.In recent years, patch-based image restoration approaches have demonstrated superior performance compared to conventional variational methods. This paper delves into the mathematical foundations underlying patch-based image restoration methods, with a specific focus on establishing restoration guarantees for patch-based image inpainting, leveraging the assumption of self-similarity among patches. To accomplish this, we present a reformulation of the image inpainting problem as structured low-rank matrix completion, accomplished by grouping image patches with potential overlaps. By making certain incoherence assumptions, we establish a restoration guarantee, given that the number of samples exceeds the order of [math], where [math] denotes the size of the image and [math] represents the sum of ranks for each group of image patches. Through our rigorous mathematical analysis, we provide valuable insights into the theoretical foundations of patch-based image restoration methods, shedding light on their efficacy and offering guidelines for practical implementation.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.