Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN

Q4 Business, Management and Accounting
Adel Hassan A. Gadhi, Shelton Peiris, David E. Allen
{"title":"Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN","authors":"Adel Hassan A. Gadhi, Shelton Peiris, David E. Allen","doi":"10.3390/jrfm17090380","DOIUrl":null,"url":null,"abstract":"This paper examines the predictive ability of volatility in time series and investigates the effect of tradition learning methods blending with the Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Using Brent crude oil returns price volatility and environmental temperature for the city of Sydney in Australia, we have shown that the corresponding forecasts have improved when combined with WGAN-GP models (i.e., ANN-(WGAN-GP), LSTM-ANN-(WGAN-GP) and BLSTM-ANN (WGAN-GP)). As a result, we conclude that incorporating with WGAN-GP will’ significantly improve the capabilities of volatility forecasting in standard econometric models and deep learning techniques.","PeriodicalId":47226,"journal":{"name":"Journal of Risk and Financial Management","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk and Financial Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jrfm17090380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines the predictive ability of volatility in time series and investigates the effect of tradition learning methods blending with the Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Using Brent crude oil returns price volatility and environmental temperature for the city of Sydney in Australia, we have shown that the corresponding forecasts have improved when combined with WGAN-GP models (i.e., ANN-(WGAN-GP), LSTM-ANN-(WGAN-GP) and BLSTM-ANN (WGAN-GP)). As a result, we conclude that incorporating with WGAN-GP will’ significantly improve the capabilities of volatility forecasting in standard econometric models and deep learning techniques.
改进波动率预测:使用 WGAN 的混合深度学习方法研究
本文探讨了时间序列波动的预测能力,并研究了传统学习方法与带梯度惩罚的瓦瑟斯坦生成对抗网络(WGAN-GP)相结合的效果。利用布伦特原油收益价格波动和澳大利亚悉尼市的环境温度,我们发现当与 WGAN-GP 模型(即 ANN-(WGAN-GP)、LSTM-ANN-(WGAN-GP)和 BLSTM-ANN- (WGAN-GP))相结合时,相应的预测结果有所改善。因此,我们得出结论,在标准计量经济学模型和深度学习技术中加入 WGAN-GP 将显著提高波动率预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
512
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信