Adel Hassan A. Gadhi, Shelton Peiris, David E. Allen
{"title":"Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN","authors":"Adel Hassan A. Gadhi, Shelton Peiris, David E. Allen","doi":"10.3390/jrfm17090380","DOIUrl":null,"url":null,"abstract":"This paper examines the predictive ability of volatility in time series and investigates the effect of tradition learning methods blending with the Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Using Brent crude oil returns price volatility and environmental temperature for the city of Sydney in Australia, we have shown that the corresponding forecasts have improved when combined with WGAN-GP models (i.e., ANN-(WGAN-GP), LSTM-ANN-(WGAN-GP) and BLSTM-ANN (WGAN-GP)). As a result, we conclude that incorporating with WGAN-GP will’ significantly improve the capabilities of volatility forecasting in standard econometric models and deep learning techniques.","PeriodicalId":47226,"journal":{"name":"Journal of Risk and Financial Management","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk and Financial Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jrfm17090380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0
Abstract
This paper examines the predictive ability of volatility in time series and investigates the effect of tradition learning methods blending with the Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Using Brent crude oil returns price volatility and environmental temperature for the city of Sydney in Australia, we have shown that the corresponding forecasts have improved when combined with WGAN-GP models (i.e., ANN-(WGAN-GP), LSTM-ANN-(WGAN-GP) and BLSTM-ANN (WGAN-GP)). As a result, we conclude that incorporating with WGAN-GP will’ significantly improve the capabilities of volatility forecasting in standard econometric models and deep learning techniques.