Non-coding RNAs in the spotlight of the pathogenesis, diagnosis, and therapy of cutaneous T cell lymphoma

IF 6.1 2区 生物学 Q1 CELL BIOLOGY
Xiao He, Qian Zhang, Yimeng Wang, Jiachen Sun, Ying Zhang, Chunlei Zhang
{"title":"Non-coding RNAs in the spotlight of the pathogenesis, diagnosis, and therapy of cutaneous T cell lymphoma","authors":"Xiao He, Qian Zhang, Yimeng Wang, Jiachen Sun, Ying Zhang, Chunlei Zhang","doi":"10.1038/s41420-024-02165-2","DOIUrl":null,"url":null,"abstract":"<p>Cutaneous T-cell lymphoma (CTCL) is a group of primary and secondary cutaneous malignancies characterized by aberrant T-cells in the skin. Diagnosing CTCL in its early stage can be difficult because of CTCL’s ability to mimic benign cutaneous inflammatory skin diseases. CTCL has multiple subtypes with different disease progression and diagnostic parameters despite similar clinical manifestations. The accurate diagnosis and prognosis of a varied range of diseases require the detection of molecular entities to capture the complete footprint of disease physiology. Non-coding RNAs (ncRNAs) have recently been discovered as major regulators of CTCL gene expression. They can affect tumor cell growth, migration, programmed cell death (PCD), and immunoregulation through interactions with the tumor microenvironment (TME), which in turn affect CTCL progression. This review summarizes recent advances in how ncRNAs regulate CTCL cell activity, especially their role in PCD. It also discusses the potential use of ncRNAs as diagnostic and prognostic biomarkers for different subtypes of CTCL. Furthermore, prospective targets and therapeutic approaches influenced by ncRNAs are presented. A better appreciation of the intricate epigenetic landscape of CTCL is expected to facilitate the creation of innovative targeted therapies for the condition.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02165-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cutaneous T-cell lymphoma (CTCL) is a group of primary and secondary cutaneous malignancies characterized by aberrant T-cells in the skin. Diagnosing CTCL in its early stage can be difficult because of CTCL’s ability to mimic benign cutaneous inflammatory skin diseases. CTCL has multiple subtypes with different disease progression and diagnostic parameters despite similar clinical manifestations. The accurate diagnosis and prognosis of a varied range of diseases require the detection of molecular entities to capture the complete footprint of disease physiology. Non-coding RNAs (ncRNAs) have recently been discovered as major regulators of CTCL gene expression. They can affect tumor cell growth, migration, programmed cell death (PCD), and immunoregulation through interactions with the tumor microenvironment (TME), which in turn affect CTCL progression. This review summarizes recent advances in how ncRNAs regulate CTCL cell activity, especially their role in PCD. It also discusses the potential use of ncRNAs as diagnostic and prognostic biomarkers for different subtypes of CTCL. Furthermore, prospective targets and therapeutic approaches influenced by ncRNAs are presented. A better appreciation of the intricate epigenetic landscape of CTCL is expected to facilitate the creation of innovative targeted therapies for the condition.

Abstract Image

聚焦皮肤 T 细胞淋巴瘤发病机制、诊断和治疗的非编码 RNA
皮肤 T 细胞淋巴瘤(CTCL)是一组以皮肤中异常 T 细胞为特征的原发性和继发性皮肤恶性肿瘤。由于 CTCL 能够模仿良性皮肤炎症性皮肤病,因此早期诊断 CTCL 十分困难。CTCL 有多种亚型,尽管临床表现相似,但疾病进展和诊断参数却各不相同。要对各种疾病进行准确诊断和预后判断,就必须检测分子实体,以捕捉疾病生理的完整足迹。最近发现,非编码 RNA(ncRNA)是 CTCL 基因表达的主要调控因子。它们可以通过与肿瘤微环境(TME)的相互作用影响肿瘤细胞的生长、迁移、程序性细胞死亡(PCD)和免疫调节,进而影响 CTCL 的进展。本综述总结了 ncRNA 如何调控 CTCL 细胞活性的最新进展,尤其是它们在 PCD 中的作用。它还讨论了 ncRNA 作为不同亚型 CTCL 诊断和预后生物标志物的潜在用途。此外,还介绍了受 ncRNA 影响的前瞻性靶点和治疗方法。更好地了解 CTCL 错综复杂的表观遗传格局有望促进创新性靶向疗法的诞生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信