Wenqiao He, Rachel Sendor, Varun R. Potlapalli, Melchior M. Kashamuka, Antoinette K. Tshefu, Fernandine Phanzu, Albert Kalonji, Billy Ngasala, Kyaw Lay Thwai, Jonathan J. Juliano, Jessica T. Lin, Jonathan B. Parr
{"title":"Development of new real-time PCR assays for detection and species differentiation of Plasmodium ovale","authors":"Wenqiao He, Rachel Sendor, Varun R. Potlapalli, Melchior M. Kashamuka, Antoinette K. Tshefu, Fernandine Phanzu, Albert Kalonji, Billy Ngasala, Kyaw Lay Thwai, Jonathan J. Juliano, Jessica T. Lin, Jonathan B. Parr","doi":"10.1371/journal.pntd.0011759","DOIUrl":null,"url":null,"abstract":"Background The parasite species formerly known as <jats:italic>Plasmodium ovale</jats:italic>, <jats:italic>Plasmodium ovalecurtisi</jats:italic> (<jats:italic>P</jats:italic>. <jats:italic>ovalecurtisi</jats:italic>) and <jats:italic>Plasmodium ovalewallikeri</jats:italic> (<jats:italic>P</jats:italic>. <jats:italic>ovalewallikeri</jats:italic>), are endemic across multiple African countries. These species are thought to differ in clinical symptomatology and latency, but only a small number of existing diagnostic assays can detect and distinguish them. In this study, we sought to develop new assays for the detection and differentiation of <jats:italic>P</jats:italic>. <jats:italic>ovalecurtisi</jats:italic> and <jats:italic>P</jats:italic>. <jats:italic>ovalewallikeri</jats:italic> by leveraging recently published whole-genome sequences for both species. Methods Repetitive sequence motifs were identified in available <jats:italic>P</jats:italic>. <jats:italic>ovalecurtisi</jats:italic> and <jats:italic>P</jats:italic>. <jats:italic>ovalewallikeri</jats:italic> genomes and used for assay development and validation. We evaluated the analytical sensitivity of the best-performing singleplex and duplex assays using synthetic plasmids. We then evaluated the specificity of the duplex assay using a panel of samples from Tanzania and the Democratic Republic of the Congo (DRC), and validated its performance using 55 <jats:italic>P</jats:italic>. <jats:italic>ovale</jats:italic> samples and 40 non-ovale <jats:italic>Plasmodium</jats:italic> samples from the DRC. Results The best-performing <jats:italic>P</jats:italic>. <jats:italic>ovalecurtisi</jats:italic> and <jats:italic>P</jats:italic>. <jats:italic>ovalewallikeri</jats:italic> targets had 9 and 8 copies within the reference genomes, respectively. The <jats:italic>P</jats:italic>. <jats:italic>ovalecurtisi</jats:italic> assay had high sensitivity with a 95% confidence lower limit of detection (LOD) of 3.6 parasite genome equivalents/μl, while the <jats:italic>P</jats:italic>. <jats:italic>ovalewallikeri</jats:italic> assay had a 95% confidence LOD of 25.9 parasite genome equivalents/μl. A duplex assay targeting both species had 100% specificity and 95% confidence LOD of 4.2 and 41.2 parasite genome equivalents/μl for <jats:italic>P</jats:italic>. <jats:italic>ovalecurtisi</jats:italic> and <jats:italic>P</jats:italic>. <jats:italic>ovalewallikeri</jats:italic>, respectively. Conclusions We identified promising multi-copy targets for molecular detection and differentiation of <jats:italic>P</jats:italic>. <jats:italic>ovalecurtisi</jats:italic> and <jats:italic>P</jats:italic>. <jats:italic>ovalewallikeri</jats:italic> and used them to develop real-time PCR assays. The best performing <jats:italic>P</jats:italic>. <jats:italic>ovalecurtisi</jats:italic> assay performed well in singleplex and duplex formats, while the <jats:italic>P</jats:italic>. <jats:italic>ovalewallikeri</jats:italic> assay did not reliably detect low-density infections in either format. These assays have potential use for high-throughput identification of <jats:italic>P</jats:italic>. <jats:italic>ovalecurtisi</jats:italic>, or for identification of higher density <jats:italic>P</jats:italic>. <jats:italic>ovalecurtisi</jats:italic> or <jats:italic>P</jats:italic>. <jats:italic>ovalewallikeri</jats:italic> infections that are amenable to downstream next-generation sequencing.","PeriodicalId":20260,"journal":{"name":"PLoS Neglected Tropical Diseases","volume":"5 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Neglected Tropical Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.pntd.0011759","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background The parasite species formerly known as Plasmodium ovale, Plasmodium ovalecurtisi (P. ovalecurtisi) and Plasmodium ovalewallikeri (P. ovalewallikeri), are endemic across multiple African countries. These species are thought to differ in clinical symptomatology and latency, but only a small number of existing diagnostic assays can detect and distinguish them. In this study, we sought to develop new assays for the detection and differentiation of P. ovalecurtisi and P. ovalewallikeri by leveraging recently published whole-genome sequences for both species. Methods Repetitive sequence motifs were identified in available P. ovalecurtisi and P. ovalewallikeri genomes and used for assay development and validation. We evaluated the analytical sensitivity of the best-performing singleplex and duplex assays using synthetic plasmids. We then evaluated the specificity of the duplex assay using a panel of samples from Tanzania and the Democratic Republic of the Congo (DRC), and validated its performance using 55 P. ovale samples and 40 non-ovale Plasmodium samples from the DRC. Results The best-performing P. ovalecurtisi and P. ovalewallikeri targets had 9 and 8 copies within the reference genomes, respectively. The P. ovalecurtisi assay had high sensitivity with a 95% confidence lower limit of detection (LOD) of 3.6 parasite genome equivalents/μl, while the P. ovalewallikeri assay had a 95% confidence LOD of 25.9 parasite genome equivalents/μl. A duplex assay targeting both species had 100% specificity and 95% confidence LOD of 4.2 and 41.2 parasite genome equivalents/μl for P. ovalecurtisi and P. ovalewallikeri, respectively. Conclusions We identified promising multi-copy targets for molecular detection and differentiation of P. ovalecurtisi and P. ovalewallikeri and used them to develop real-time PCR assays. The best performing P. ovalecurtisi assay performed well in singleplex and duplex formats, while the P. ovalewallikeri assay did not reliably detect low-density infections in either format. These assays have potential use for high-throughput identification of P. ovalecurtisi, or for identification of higher density P. ovalecurtisi or P. ovalewallikeri infections that are amenable to downstream next-generation sequencing.
期刊介绍:
PLOS Neglected Tropical Diseases publishes research devoted to the pathology, epidemiology, prevention, treatment and control of the neglected tropical diseases (NTDs), as well as relevant public policy.
The NTDs are defined as a group of poverty-promoting chronic infectious diseases, which primarily occur in rural areas and poor urban areas of low-income and middle-income countries. Their impact on child health and development, pregnancy, and worker productivity, as well as their stigmatizing features limit economic stability.
All aspects of these diseases are considered, including:
Pathogenesis
Clinical features
Pharmacology and treatment
Diagnosis
Epidemiology
Vector biology
Vaccinology and prevention
Demographic, ecological and social determinants
Public health and policy aspects (including cost-effectiveness analyses).