{"title":"Ground response and failure mechanism of gob-side entry by roof cutting with hard main roof","authors":"Heng-zhong Zhu, Lei Xu, Zhi-jie Wen","doi":"10.1007/s11771-024-5695-3","DOIUrl":null,"url":null,"abstract":"<p>This study is the result of long-term efforts of the authors’ team to assess ground response of gob-side entry by roof cutting (GSERC) with hard main roof, aiming at scientific control for GSERC deformation. A comprehensive field measurement program was conducted to determine entry deformation, roof fracture zone, and anchor bolt (cable) loading. The results indicate that GSERC deformation presents asymmetric characteristics. The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process. The entry deformation is closely associated with the primary development stage, primary use stage, and secondary reuse stage. The key block movement of roof cutting structure, a complex stress environment, and a mismatch in the supporting design scheme are the failure mechanism of GSERC. A controlling ideology for mining states, including regional and stage divisions, was proposed. Both dynamic and permanent support schemes have been implemented in the field. Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"183 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5695-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This study is the result of long-term efforts of the authors’ team to assess ground response of gob-side entry by roof cutting (GSERC) with hard main roof, aiming at scientific control for GSERC deformation. A comprehensive field measurement program was conducted to determine entry deformation, roof fracture zone, and anchor bolt (cable) loading. The results indicate that GSERC deformation presents asymmetric characteristics. The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process. The entry deformation is closely associated with the primary development stage, primary use stage, and secondary reuse stage. The key block movement of roof cutting structure, a complex stress environment, and a mismatch in the supporting design scheme are the failure mechanism of GSERC. A controlling ideology for mining states, including regional and stage divisions, was proposed. Both dynamic and permanent support schemes have been implemented in the field. Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.
期刊介绍:
Focuses on the latest research achievements in mining and metallurgy
Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering