Glassy Dynamics from First-Principles Simulations

Florian Pabst, Stefano Baroni
{"title":"Glassy Dynamics from First-Principles Simulations","authors":"Florian Pabst, Stefano Baroni","doi":"arxiv-2408.05528","DOIUrl":null,"url":null,"abstract":"The microscopic understanding of the dramatic increase in viscosity of\nliquids when cooled towards the glass transition is a major unresolved issue in\ncondensed matter physics. Here, we use machine learning methods to accelerate\nmolecular dynamics simulations with first-principles accuracy for the\nglass-former toluene. We show that the increase in viscosity is intimately\nlinked to the increasing number of dynamically correlated molecules $N^*$.\nWhile certain hallmark features of glassy dynamics, like physical aging, are\nlinked to $N^*$ as well, others, like relaxation stretching, are not.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The microscopic understanding of the dramatic increase in viscosity of liquids when cooled towards the glass transition is a major unresolved issue in condensed matter physics. Here, we use machine learning methods to accelerate molecular dynamics simulations with first-principles accuracy for the glass-former toluene. We show that the increase in viscosity is intimately linked to the increasing number of dynamically correlated molecules $N^*$. While certain hallmark features of glassy dynamics, like physical aging, are linked to $N^*$ as well, others, like relaxation stretching, are not.
来自第一原理模拟的玻璃动力学
从微观上理解液体在冷却至玻璃化转变时粘度急剧增加的现象,是凝结物质物理学的一个重大未决问题。在这里,我们利用机器学习方法,以第一原理的精度加速了对玻璃化物甲苯的分子动力学模拟。我们的研究表明,粘度的增加与动态相关分子数量 $N^*$ 的增加密切相关。虽然玻璃态动力学的某些标志性特征(如物理老化)也与 $N^*$ 相关,但其他特征(如弛豫伸展)则与 $N^*$ 无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信