Machine learning of phases and structures for model systems in physics

Djenabou Bayo, Burak Çivitcioğlu, Joseph J Webb, Andreas Honecker, Rudolf A. Römer
{"title":"Machine learning of phases and structures for model systems in physics","authors":"Djenabou Bayo, Burak Çivitcioğlu, Joseph J Webb, Andreas Honecker, Rudolf A. Römer","doi":"arxiv-2409.03023","DOIUrl":null,"url":null,"abstract":"The detection of phase transitions is a fundamental challenge in condensed\nmatter physics, traditionally addressed through analytical methods and direct\nnumerical simulations. In recent years, machine learning techniques have\nemerged as powerful tools to complement these standard approaches, offering\nvaluable insights into phase and structure determination. Additionally, they\nhave been shown to enhance the application of traditional methods. In this\nwork, we review recent advancements in this area, with a focus on our\ncontributions to phase and structure determination using supervised and\nunsupervised learning methods in several systems: (a) 2D site percolation, (b)\nthe 3D Anderson model of localization, (c) the 2D $J_1$-$J_2$ Ising model, and\n(d) the prediction of large-angle convergent beam electron diffraction\npatterns.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of phase transitions is a fundamental challenge in condensed matter physics, traditionally addressed through analytical methods and direct numerical simulations. In recent years, machine learning techniques have emerged as powerful tools to complement these standard approaches, offering valuable insights into phase and structure determination. Additionally, they have been shown to enhance the application of traditional methods. In this work, we review recent advancements in this area, with a focus on our contributions to phase and structure determination using supervised and unsupervised learning methods in several systems: (a) 2D site percolation, (b) the 3D Anderson model of localization, (c) the 2D $J_1$-$J_2$ Ising model, and (d) the prediction of large-angle convergent beam electron diffraction patterns.
物理学模型系统相位和结构的机器学习
相变检测是凝聚态物理学的一项基本挑战,传统上通过分析方法和直接数值模拟来解决。近年来,机器学习技术已成为这些标准方法的有力补充,为相变和结构确定提供了宝贵的见解。此外,这些技术还被证明可以提高传统方法的应用。在这篇论文中,我们回顾了这一领域的最新进展,重点介绍了我们在以下几个系统中使用监督和非监督学习方法对相位和结构确定所做的贡献:(a) 二维位点渗流,(b) 三维安德森定位模型,(c) 二维 $J_1$-$J_2$ 伊辛模型,以及(d) 大角度会聚束电子衍射图案的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信