{"title":"Hard Rock Absorption Measurements in the W-Band","authors":"Alex Shteinman, Yaakov Anker, Moshe Einat","doi":"10.1007/s10762-024-00998-7","DOIUrl":null,"url":null,"abstract":"<p>Deep geothermal drilling is a necessary technological stage to produce renewable energy by “enhanced geothermal systems” everywhere. However, the high cost and complexity of deep drilling through hard rock formations is a major barrier to its commercialization. One approach to reach affordability and reduce the cost of deep drilling is to use millimeter-wave (mmw) gyrotron radiation to melt or vaporize rocks. In this paper, the results of an experimental study of mmw radiation absorption by hard rocks are presented. Electromagnetic attenuation and reflection were measured in W-band at frequencies from 75 to 110 GHz in eight rock samples from six different geological formations originated in Israel. The results show that the mmw radiation absorption in hard rocks ranges from 90 to 99% per centimeter. The absorption varies slightly with rock type and is relatively independent of frequency but has reached higher values at the upper W band for all samples. The study suggests that high-power mmw radiation is a promising technology for deep geothermal drilling. The results of this experiment, attenuation, and reflection of W-band radiation in hard rocks provide valuable information for the design and optimization of mmw-based drilling systems, and will support the design and optimization of gyrotron based hard rock drilling equipment for geothermal applications.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-00998-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Deep geothermal drilling is a necessary technological stage to produce renewable energy by “enhanced geothermal systems” everywhere. However, the high cost and complexity of deep drilling through hard rock formations is a major barrier to its commercialization. One approach to reach affordability and reduce the cost of deep drilling is to use millimeter-wave (mmw) gyrotron radiation to melt or vaporize rocks. In this paper, the results of an experimental study of mmw radiation absorption by hard rocks are presented. Electromagnetic attenuation and reflection were measured in W-band at frequencies from 75 to 110 GHz in eight rock samples from six different geological formations originated in Israel. The results show that the mmw radiation absorption in hard rocks ranges from 90 to 99% per centimeter. The absorption varies slightly with rock type and is relatively independent of frequency but has reached higher values at the upper W band for all samples. The study suggests that high-power mmw radiation is a promising technology for deep geothermal drilling. The results of this experiment, attenuation, and reflection of W-band radiation in hard rocks provide valuable information for the design and optimization of mmw-based drilling systems, and will support the design and optimization of gyrotron based hard rock drilling equipment for geothermal applications.
期刊介绍:
The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications.
Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms).
Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.