Molecular anatomy of the pressure anisotropy in the interface of one and two component fluids: local thermodynamic description of the interfacial tension

Takeshi Omori, Yasutaka Yamaguchi
{"title":"Molecular anatomy of the pressure anisotropy in the interface of one and two component fluids: local thermodynamic description of the interfacial tension","authors":"Takeshi Omori, Yasutaka Yamaguchi","doi":"arxiv-2408.17038","DOIUrl":null,"url":null,"abstract":"Through the decomposition of the pressure into the kinetic and the\nintermolecular contributions, we show that the pressure anisotropy in the fluid\ninterface, which is the source of the interfacial tension, comes solely from\nthe latter contribution. The pressure anisotropy due to the intermolecular\nforce between the fluid particles in the same or the different fluid components\nis approximately proportional to the multiplication of the corresponding fluid\ndensity gradients, and from the molecular dynamics simulation of the\nliquid-vapor and liquid-liquid interfaces, we demonstrate that the density\ngradient theory (DGT) by van der Waals gives the leading order approximation of\nthe free energy density in inhomogeneous systems, neglecting the Tolman length.","PeriodicalId":501146,"journal":{"name":"arXiv - PHYS - Soft Condensed Matter","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Through the decomposition of the pressure into the kinetic and the intermolecular contributions, we show that the pressure anisotropy in the fluid interface, which is the source of the interfacial tension, comes solely from the latter contribution. The pressure anisotropy due to the intermolecular force between the fluid particles in the same or the different fluid components is approximately proportional to the multiplication of the corresponding fluid density gradients, and from the molecular dynamics simulation of the liquid-vapor and liquid-liquid interfaces, we demonstrate that the density gradient theory (DGT) by van der Waals gives the leading order approximation of the free energy density in inhomogeneous systems, neglecting the Tolman length.
单组分和双组分流体界面压力各向异性的分子解剖:界面张力的局部热力学描述
通过将压力分解为动力学贡献和分子间贡献,我们证明了作为界面张力来源的流体界面压力各向异性完全来自于分子间贡献。通过对液-汽和液-液界面的分子动力学模拟,我们证明了范德瓦耳斯密度梯度理论(DGT)给出了非均相体系中自由能密度的前阶近似值,忽略了托尔曼长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信