{"title":"Adaptive weighted stacking model with optimal weights selection for mortality risk prediction in sepsis patients","authors":"Liang Zhou, Wenjin Li, Tao Wu, Zhiping Fan, Levent Ismaili, Temitope Emmanuel Komolafe, Siwen Zhang","doi":"10.1007/s10489-024-05783-6","DOIUrl":null,"url":null,"abstract":"<div><p>Sepsis patients in the ICU face heightened mortality risks. There still exist challenges that hinder the development of mortality risk prediction models for sepsis patients. In the ensemble model, the differences between base classifier performance can affect the model accuracy and efficiency, and overlapping sample training will lead to repetitive learning, which reduces the model generalization. To tackle these challenges, we propose an Adaptive Weighted Stacking based on Optimal Weights Selection (AWS-OWS) model. A random sampling without replacement is employed to prevent repetitive learning in base classifiers. Additionally, a weighted function and the gradient descent algorithm is adopted to select optimal weights for base classifiers, enhancing the performance of stacking model. The MIMIC-IV dataset is used for model training and internal testing, and the independent samples from MIMIC-III are used for external validation. The results show that AWS-OWS achieves the best AUC of 0.88 in the internal test, with a threefold reduction in computation time compared to standard stacking. In external validation, it also demonstrates good model generalization. AWS-OWS significantly improves the prediction performance and model efficiency, facilitates the identification of high-risk patients with sepsis and supports clinicians in determining appropriate management and treatment strategies.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"54 22","pages":"11892 - 11913"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05783-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis patients in the ICU face heightened mortality risks. There still exist challenges that hinder the development of mortality risk prediction models for sepsis patients. In the ensemble model, the differences between base classifier performance can affect the model accuracy and efficiency, and overlapping sample training will lead to repetitive learning, which reduces the model generalization. To tackle these challenges, we propose an Adaptive Weighted Stacking based on Optimal Weights Selection (AWS-OWS) model. A random sampling without replacement is employed to prevent repetitive learning in base classifiers. Additionally, a weighted function and the gradient descent algorithm is adopted to select optimal weights for base classifiers, enhancing the performance of stacking model. The MIMIC-IV dataset is used for model training and internal testing, and the independent samples from MIMIC-III are used for external validation. The results show that AWS-OWS achieves the best AUC of 0.88 in the internal test, with a threefold reduction in computation time compared to standard stacking. In external validation, it also demonstrates good model generalization. AWS-OWS significantly improves the prediction performance and model efficiency, facilitates the identification of high-risk patients with sepsis and supports clinicians in determining appropriate management and treatment strategies.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.