{"title":"Research on the prediction algorithm of aero engine lubricating oil consumption based on multi-feature information fusion","authors":"Qifan Zhou, Yingqing Guo, Kejie Xu, Bosong Chai, Guicai Li, Kun Wang, Yunhui Dong","doi":"10.1007/s10489-024-05759-6","DOIUrl":null,"url":null,"abstract":"<div><p>The lubrication system supplies lubrication and cleans the rotating parts and contacting machinery during the operation of an aero-engine. It is crucial to maintain an adequate amount of lubricant by predicting and analyzing the consumption rate to ensure endurance and maintenance programs are effective. This paper examines the combination of temporal and non-temporal data that impact the characteristic parameters of lubricant consumption rate in aero-engines. Our study focuses on the merging of LSTM (Long Short-Term Memory) + LightGBM (Light Gradient Boosting Machine) + CatBoost, and uses KPCA dimensionality reduction optimization, along with Stacking for the fusion of a multi-feature regression prediction algorithm. On the one hand, this study utilizes integrated learning to fuse feature extractions from LSTM for temporal information and non-temporal information by GDBT (Gradient Boosting Decision Tree). This approach considers the trend and distribution of feature samples to develop a more robust feature extraction method. On the other hand, the integrated learning framework incorporates multi-decision making and feature importance extraction to strengthen the mapping relationship with the predicted output of lubrication oil consumption rate, enabling regression prediction. The algorithm for regression prediction has been executed and the results indicate a final regression prediction MAPE (Mean Absolute Percentage Error) of less than 3%. MSE and RMSE reached 1.28% and 1.33%, the results are in an ideal state. The algorithms used in this paper will be applied in the future to aero-engine lubricant systems and eventually to engines in general.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"54 22","pages":"11845 - 11875"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05759-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The lubrication system supplies lubrication and cleans the rotating parts and contacting machinery during the operation of an aero-engine. It is crucial to maintain an adequate amount of lubricant by predicting and analyzing the consumption rate to ensure endurance and maintenance programs are effective. This paper examines the combination of temporal and non-temporal data that impact the characteristic parameters of lubricant consumption rate in aero-engines. Our study focuses on the merging of LSTM (Long Short-Term Memory) + LightGBM (Light Gradient Boosting Machine) + CatBoost, and uses KPCA dimensionality reduction optimization, along with Stacking for the fusion of a multi-feature regression prediction algorithm. On the one hand, this study utilizes integrated learning to fuse feature extractions from LSTM for temporal information and non-temporal information by GDBT (Gradient Boosting Decision Tree). This approach considers the trend and distribution of feature samples to develop a more robust feature extraction method. On the other hand, the integrated learning framework incorporates multi-decision making and feature importance extraction to strengthen the mapping relationship with the predicted output of lubrication oil consumption rate, enabling regression prediction. The algorithm for regression prediction has been executed and the results indicate a final regression prediction MAPE (Mean Absolute Percentage Error) of less than 3%. MSE and RMSE reached 1.28% and 1.33%, the results are in an ideal state. The algorithms used in this paper will be applied in the future to aero-engine lubricant systems and eventually to engines in general.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.