Parabolic Regularity of Spectral Functions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ashkan Mohammadi, Ebrahim Sarabi
{"title":"Parabolic Regularity of Spectral Functions","authors":"Ashkan Mohammadi, Ebrahim Sarabi","doi":"10.1287/moor.2023.0010","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the study of the second-order variational analysis of spectral functions. It is well-known that spectral functions can be expressed as a composite function of symmetric functions and eigenvalue functions. We establish several second-order properties of spectral functions when their associated symmetric functions enjoy these properties. Our main attention is given to characterize parabolic regularity for this class of functions. It was observed recently that parabolic regularity can play a central rule in ensuring the validity of important second-order variational properties, such as twice epi-differentiability. We demonstrates that for convex spectral functions, their parabolic regularity amounts to that of their symmetric functions. As an important consequence, we calculate the second subderivative of convex spectral functions, which allows us to establish second-order optimality conditions for a class of matrix optimization problems.Funding: The research of A. Mohammadi is funded by a postdoctoral fellowship from Georgetown University. E. Sarabi is partially supported by the U.S. National Science Foundation [Grant DMS 2108546].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to the study of the second-order variational analysis of spectral functions. It is well-known that spectral functions can be expressed as a composite function of symmetric functions and eigenvalue functions. We establish several second-order properties of spectral functions when their associated symmetric functions enjoy these properties. Our main attention is given to characterize parabolic regularity for this class of functions. It was observed recently that parabolic regularity can play a central rule in ensuring the validity of important second-order variational properties, such as twice epi-differentiability. We demonstrates that for convex spectral functions, their parabolic regularity amounts to that of their symmetric functions. As an important consequence, we calculate the second subderivative of convex spectral functions, which allows us to establish second-order optimality conditions for a class of matrix optimization problems.Funding: The research of A. Mohammadi is funded by a postdoctoral fellowship from Georgetown University. E. Sarabi is partially supported by the U.S. National Science Foundation [Grant DMS 2108546].
谱函数的抛物线正则性
本文致力于研究谱函数的二阶变分分析。众所周知,谱函数可以表示为对称函数和特征值函数的复合函数。当谱函数的相关对称函数具有这些性质时,我们建立了谱函数的几个二阶性质。我们主要关注这类函数的抛物线正则性。最近观察到,抛物线正则性在确保重要的二阶变分性质(如两次表微分性)的有效性方面发挥着核心作用。我们证明,对于凸谱函数,其抛物线正则性相当于其对称函数的抛物线正则性。一个重要的结果是,我们计算了凸谱函数的二阶次乘法,从而为一类矩阵优化问题建立了二阶最优条件:A. Mohammadi 的研究由乔治城大学博士后奖学金资助。E. Sarabi 得到美国国家科学基金会 [Grant DMS 2108546] 的部分资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信