{"title":"Optimal Ratcheting of Dividends with Capital Injection","authors":"Wenyuan Wang, Ran Xu, Kaixin Yan","doi":"10.1287/moor.2023.0102","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the optimal dividend problem with capital injection and ratcheting constraint with nondecreasing dividend payout rate. Capital injections are introduced in order to eliminate the possibility of bankruptcy. Under the Cramér–Lundberg risk model, the problem is formulated as a two-dimensional stochastic control problem. By applying the viscosity theory, we show that the value function is the unique viscosity solution to the associated Hamilton–Jacobi–Bellman equation. In order to obtain analytical results, we further study the problem with finite ratcheting constraint, where the dividend rate takes only a finite number of available values. We show that the value function under general ratcheting can be approximated arbitrarily closely by the one with finite ratcheting. Finally, we derive the expressions of value function when the threshold-type finite ratcheting dividend strategy with capital injection is applied, and we show the optimality of such a strategy under certain conditions of concavity. Numerical examples under various scenarios are provided at the end.Funding W. Wang was supported by the National Natural Science Foundation of China [Grants 12171405, 12271066, and 11661074] and the Fundamental Research Funds for the Central Universities of China [Grant 20720220044]. R. Xu was supported by the National Natural Science Foundation of China [Grants 12201506 and 12371468], the Natural Science Foundation of the Jiangsu Higher Education Institutions of China [Grant 21KJB110024], and Xi’an Jiaotong-Liverpool University Research Development Funding [Grant RDF-20-01-02].","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"38 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0102","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the optimal dividend problem with capital injection and ratcheting constraint with nondecreasing dividend payout rate. Capital injections are introduced in order to eliminate the possibility of bankruptcy. Under the Cramér–Lundberg risk model, the problem is formulated as a two-dimensional stochastic control problem. By applying the viscosity theory, we show that the value function is the unique viscosity solution to the associated Hamilton–Jacobi–Bellman equation. In order to obtain analytical results, we further study the problem with finite ratcheting constraint, where the dividend rate takes only a finite number of available values. We show that the value function under general ratcheting can be approximated arbitrarily closely by the one with finite ratcheting. Finally, we derive the expressions of value function when the threshold-type finite ratcheting dividend strategy with capital injection is applied, and we show the optimality of such a strategy under certain conditions of concavity. Numerical examples under various scenarios are provided at the end.Funding W. Wang was supported by the National Natural Science Foundation of China [Grants 12171405, 12271066, and 11661074] and the Fundamental Research Funds for the Central Universities of China [Grant 20720220044]. R. Xu was supported by the National Natural Science Foundation of China [Grants 12201506 and 12371468], the Natural Science Foundation of the Jiangsu Higher Education Institutions of China [Grant 21KJB110024], and Xi’an Jiaotong-Liverpool University Research Development Funding [Grant RDF-20-01-02].
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.