Existence of Nodal Solutions with Arbitrary Number of Nodes for Kirchhoff Type Equations

IF 1 3区 数学 Q1 MATHEMATICS
Tao Wang, Jing Lai, Hui Guo
{"title":"Existence of Nodal Solutions with Arbitrary Number of Nodes for Kirchhoff Type Equations","authors":"Tao Wang, Jing Lai, Hui Guo","doi":"10.1007/s40840-024-01762-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are interested in the following Kirchhoff type equation </p><span>$$\\begin{aligned} \\left\\{ \\begin{aligned}&amp;\\bigg [a+\\lambda \\bigg (\\int _{{\\mathbb {R}}^3}(|\\nabla u|^2+V(|x|)u^2)dx\\bigg )^{\\alpha }\\bigg ]\\bigg (-\\Delta u+V(|x|)u\\bigg )=|u|^{p-2}u\\quad \\text{ in } {\\mathbb {R}}^3,\\\\&amp;u\\ \\in H^{1}({\\mathbb {R}}^3),\\\\ \\end{aligned}\\right. \\end{aligned}$$</span>(0.1)<p>where <span>\\(a,\\lambda &gt;0,\\alpha \\in (0,2)\\)</span> and <span>\\(p\\in (2\\alpha +2,6).\\)</span> The potential <i>V</i>(|<i>x</i>|) is radial and bounded below by a positive number. By introducing the Gersgorin Disc’s theorem, we prove that for each positive integer <i>k</i>, Eq. (0.1) has a radial nodal solution <span>\\(U_k^{\\lambda }\\)</span> with exactly <i>k</i> nodes. Moreover, the energy of <span>\\(U_k^{\\lambda }\\)</span> is strictly increasing in <i>k</i> and for any sequence <span>\\(\\{\\lambda _n\\}\\)</span> with <span>\\(\\lambda _n\\rightarrow 0^+,\\)</span> up to a subsequence, <span>\\(U_k^{\\lambda _n}\\)</span> converges to <span>\\(U_k^0\\)</span> in <span>\\(H^{1}({\\mathbb {R}}^3)\\)</span>, which is also a radial nodal solution with exactly <i>k</i> nodes to the classical Schrödinger equation </p><span>$$\\begin{aligned} \\left\\{ \\begin{aligned}&amp;-a\\Delta u+aV(|x|)u=|u|^{p-2}u\\quad \\text{ in } {\\mathbb {R}}^3,\\\\&amp;u\\ \\in H^{1}({\\mathbb {R}}^3). \\end{aligned}\\right. \\end{aligned}$$</span><p>Our results can be viewed as an extension of Kirchhoff equation concerning the existence of nodal solutions with any prescribed numbers of nodes.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"39 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01762-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are interested in the following Kirchhoff type equation

$$\begin{aligned} \left\{ \begin{aligned}&\bigg [a+\lambda \bigg (\int _{{\mathbb {R}}^3}(|\nabla u|^2+V(|x|)u^2)dx\bigg )^{\alpha }\bigg ]\bigg (-\Delta u+V(|x|)u\bigg )=|u|^{p-2}u\quad \text{ in } {\mathbb {R}}^3,\\&u\ \in H^{1}({\mathbb {R}}^3),\\ \end{aligned}\right. \end{aligned}$$(0.1)

where \(a,\lambda >0,\alpha \in (0,2)\) and \(p\in (2\alpha +2,6).\) The potential V(|x|) is radial and bounded below by a positive number. By introducing the Gersgorin Disc’s theorem, we prove that for each positive integer k, Eq. (0.1) has a radial nodal solution \(U_k^{\lambda }\) with exactly k nodes. Moreover, the energy of \(U_k^{\lambda }\) is strictly increasing in k and for any sequence \(\{\lambda _n\}\) with \(\lambda _n\rightarrow 0^+,\) up to a subsequence, \(U_k^{\lambda _n}\) converges to \(U_k^0\) in \(H^{1}({\mathbb {R}}^3)\), which is also a radial nodal solution with exactly k nodes to the classical Schrödinger equation

$$\begin{aligned} \left\{ \begin{aligned}&-a\Delta u+aV(|x|)u=|u|^{p-2}u\quad \text{ in } {\mathbb {R}}^3,\\&u\ \in H^{1}({\mathbb {R}}^3). \end{aligned}\right. \end{aligned}$$

Our results can be viewed as an extension of Kirchhoff equation concerning the existence of nodal solutions with any prescribed numbers of nodes.

基尔霍夫方程存在任意节点数的节点解
在本文中,我们对以下基尔霍夫方程感兴趣\a+lambda (int _{{\mathbb {R}}^3}(|\nabla u|^2+V(|x|)u^2)dx\bigg )^{alpha }\bigg ]bigg (-\Delta u+V(|x|)u\bigg )=|u|^{p-2}uquad \text{ in }{mathbb {R}}^3,\&u\in H^{1}({\mathbb {R}}^3),\\end{aligned}\right.\end{aligned}$$(0.1)where \(a,\lambda >0,\alpha \in (0,2)\) and\(p\in (2\alpha +2,6).\)势V(|x|)是径向的,下面以正数为界。通过引入格尔格林圆盘定理,我们证明对于每个正整数 k,式(0.1)都有一个恰好有 k 个节点的径向节点解 \(U_k^{\lambda }\) 。而且,对于任何序列来说,\(U_k^{/lambda }\ 的能量在k上都是严格递增的,并且\(\/lambda _n\rightarrow 0^+,\) 直到一个子序列、\在H^{1}({\mathbb {R}}^3)\)中,(U_k^{lambda_n})收敛于(U_k^0\),这也是经典薛定谔方程$$\begin{aligned}的一个恰好有k个节点的径向节点解。\left\{ }&-a\Delta u+aV(|x|)u=|u|^{p-2}u\quad \text{ in }{mathbb {R}}^3,\&u\in H^{1}({\mathbb {R}}^3).\end{aligned}\right.\我们的结果可以看作是基尔霍夫方程的一个扩展,涉及任意规定节点数的节点解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信