On the reduced unramified Witt group of the product of two conics

Pub Date : 2024-09-12 DOI:10.1007/s00229-024-01591-x
Alexander S. Sivatski
{"title":"On the reduced unramified Witt group of the product of two conics","authors":"Alexander S. Sivatski","doi":"10.1007/s00229-024-01591-x","DOIUrl":null,"url":null,"abstract":"<p>We investigate the reduced unramified Witt group of the product of two smooth projective conics <span>\\(X_1\\)</span>, <span>\\(X_2\\)</span> over a field. In some particular cases, this group denoted as <span>\\(W(X_1,X_2)\\)</span> turns out to be very small (zero or <span>\\({\\mathbb {Z}}/2{\\mathbb {Z}}\\)</span>). On the other hand, certain examples when it is infinite are constructed. We give sufficient conditions providing nontriviality of <span>\\(W(X_1,X_2)\\)</span> in terms of 2-fold Pfister forms <span>\\(\\pi _1\\)</span>, <span>\\(\\pi _2\\)</span> associated with the conics. These conditions and constructions of the corresponding nonzero elements in <span>\\(W(X_1,X_2)\\)</span> depend on <span>\\({\\text {ind}}(\\pi _1+\\pi _2)\\)</span>. Also we study the question of triviality (nontriviality) of this group with respect to extensions of the ground field.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01591-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the reduced unramified Witt group of the product of two smooth projective conics \(X_1\), \(X_2\) over a field. In some particular cases, this group denoted as \(W(X_1,X_2)\) turns out to be very small (zero or \({\mathbb {Z}}/2{\mathbb {Z}}\)). On the other hand, certain examples when it is infinite are constructed. We give sufficient conditions providing nontriviality of \(W(X_1,X_2)\) in terms of 2-fold Pfister forms \(\pi _1\), \(\pi _2\) associated with the conics. These conditions and constructions of the corresponding nonzero elements in \(W(X_1,X_2)\) depend on \({\text {ind}}(\pi _1+\pi _2)\). Also we study the question of triviality (nontriviality) of this group with respect to extensions of the ground field.

Abstract Image

分享
查看原文
论两个圆锥的乘积的还原无ramified 维特群
我们研究了域上两个光滑投影圆锥 \(X_1\),\(X_2\)的乘积的还原无ramified Witt 群。在某些特殊情况下,这个表示为 \(W(X_1,X_2)\) 的群很小(零或 \({\mathbb{Z}}/2{mathbb{Z}}\))。另一方面,我们也构造了一些当它无限大时的例子。我们给出了提供与圆锥相关的 2 折普菲斯特形式 \(\pi _1\), \(\pi _2\) 的 \(W(X_1,X_2)\)的非难性的充分条件。这些条件和在\(W(X_1,X_2)\)中相应非零元素的构造取决于\({\text {ind}}(\pi _1+\pi _2)\)。此外,我们还研究了这个群对于地场的扩展的三重性(非三重性)问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信