{"title":"Self-Assembled Protein Micelles for Encapsulation of Docosahexaenoic Acid (DHA): The Improvement of Bioaccessibility and Lipid-Lowering Activity","authors":"Yumeng Liu, Haoran Song, Jing Li, Wentao Xing, Jing Li, Rina Wu, Junrui Wu","doi":"10.1007/s11947-024-03562-2","DOIUrl":null,"url":null,"abstract":"<p>Docosahexaenoic acid (DHA; 22-carbon-6) is renowned for its diverse biological activities and essential role in human wellness. However, owing to its highly unsaturated structure, dietary DHA is susceptible to oxidation and degradation in the gastrointestinal tract. Proteins are considered ideal carriers for protecting sensitive bioactive compounds like DHA from environmental factors. In this study, we prepared self-assembled micelles of ovalbumin (Ova), myosin (Myo), 7S soy globulin (Ssg), and β-lactoglobulin (β-la) to encapsulate DHA, resulting in O(DHA), M(DHA), S(DHA), and β(DHA) micelles via the chymotrypsin hydrolysis. We evaluated the encapsulation effectiveness of these micelles by assessing their encapsulation efficiency, storage stability, and bioaccessibility of DHA. The results indicated that O(DHA), M(DHA), S(DHA), and β(DHA) formed uniform, monodisperse nanospheres, with an outer shell composed of hydrolyzed micelle material and an inner core of encapsulated DHA. The secondary structures of Ova, Myo, Ssg, and β-la micelles were altered during the micelle formation process. The encapsulation rates for DHA in Ova, Myo, and β-la micelles were all above 70%, with Ssg micelles achieving over 90%. The zeta potential values of O(DHA), M(DHA), S(DHA), and β(DHA) remained between 20 and 30 mV over 4 weeks of storage. The particle diameters of O(DHA), S(DHA), and β(DHA) remained relatively stable throughout the storage period, while the diameter of M(DHA) showed significant changes. Additionally, the bioaccessibilities of O(DHA), M(DHA), and β(DHA) were all above 50%, with S(DHA) reaching 71.36 ± 4.27%. The encapsulation of DHA in Ova, Myo, Ssg, and β-la micelles enhanced the retention of DHA in gastrointestinal fluid. Ova, Myo, Ssg, and β-la micelles significantly improved the efficiency of DHA transport across a Caco-2 cell monolayer. Micelles containing DHA were more effective than free DHA in reducing total cholesterol (TC) and alanine aminotransferase (ALT) levels, increasing the number of autophagosomes, and upregulating the mRNA expression levels of PPARα and CPT1A in HepG2 cells, thereby reducing lipid accumulation. These findings support the use of Ova, Myo, Ssg, and β-la micelles as effective carriers for DHA.</p>","PeriodicalId":562,"journal":{"name":"Food and Bioprocess Technology","volume":"4 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioprocess Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11947-024-03562-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Docosahexaenoic acid (DHA; 22-carbon-6) is renowned for its diverse biological activities and essential role in human wellness. However, owing to its highly unsaturated structure, dietary DHA is susceptible to oxidation and degradation in the gastrointestinal tract. Proteins are considered ideal carriers for protecting sensitive bioactive compounds like DHA from environmental factors. In this study, we prepared self-assembled micelles of ovalbumin (Ova), myosin (Myo), 7S soy globulin (Ssg), and β-lactoglobulin (β-la) to encapsulate DHA, resulting in O(DHA), M(DHA), S(DHA), and β(DHA) micelles via the chymotrypsin hydrolysis. We evaluated the encapsulation effectiveness of these micelles by assessing their encapsulation efficiency, storage stability, and bioaccessibility of DHA. The results indicated that O(DHA), M(DHA), S(DHA), and β(DHA) formed uniform, monodisperse nanospheres, with an outer shell composed of hydrolyzed micelle material and an inner core of encapsulated DHA. The secondary structures of Ova, Myo, Ssg, and β-la micelles were altered during the micelle formation process. The encapsulation rates for DHA in Ova, Myo, and β-la micelles were all above 70%, with Ssg micelles achieving over 90%. The zeta potential values of O(DHA), M(DHA), S(DHA), and β(DHA) remained between 20 and 30 mV over 4 weeks of storage. The particle diameters of O(DHA), S(DHA), and β(DHA) remained relatively stable throughout the storage period, while the diameter of M(DHA) showed significant changes. Additionally, the bioaccessibilities of O(DHA), M(DHA), and β(DHA) were all above 50%, with S(DHA) reaching 71.36 ± 4.27%. The encapsulation of DHA in Ova, Myo, Ssg, and β-la micelles enhanced the retention of DHA in gastrointestinal fluid. Ova, Myo, Ssg, and β-la micelles significantly improved the efficiency of DHA transport across a Caco-2 cell monolayer. Micelles containing DHA were more effective than free DHA in reducing total cholesterol (TC) and alanine aminotransferase (ALT) levels, increasing the number of autophagosomes, and upregulating the mRNA expression levels of PPARα and CPT1A in HepG2 cells, thereby reducing lipid accumulation. These findings support the use of Ova, Myo, Ssg, and β-la micelles as effective carriers for DHA.
期刊介绍:
Food and Bioprocess Technology provides an effective and timely platform for cutting-edge high quality original papers in the engineering and science of all types of food processing technologies, from the original food supply source to the consumer’s dinner table. It aims to be a leading international journal for the multidisciplinary agri-food research community.
The journal focuses especially on experimental or theoretical research findings that have the potential for helping the agri-food industry to improve process efficiency, enhance product quality and, extend shelf-life of fresh and processed agri-food products. The editors present critical reviews on new perspectives to established processes, innovative and emerging technologies, and trends and future research in food and bioproducts processing. The journal also publishes short communications for rapidly disseminating preliminary results, letters to the Editor on recent developments and controversy, and book reviews.