Parahoric reduction theory of formal connections (or Higgs fields)

Zhi Hu, Pengfei Huang, Ruiran Sun, Runhong Zong
{"title":"Parahoric reduction theory of formal connections (or Higgs fields)","authors":"Zhi Hu, Pengfei Huang, Ruiran Sun, Runhong Zong","doi":"arxiv-2409.05073","DOIUrl":null,"url":null,"abstract":"In this paper, we establish the parahoric reduction theory of formal\nconnections (or Higgs fields) on a formal principal bundle with parahoric\nstructures, which generalizes Babbitt-Varadarajan's result for the case without\nparahoric structures [5] and Boalch's result for the case of regular\nsingularity [9]. As applications, we prove the equivalence between extrinsic\ndefinition and intrinsic definition of regular singularity and provide a\ncriterion of relative regularity for formal connections, and also demonstrate a\nparahoric version of Frenkel-Zhu's Borel reduction theorem of formal\nconnections [23].","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish the parahoric reduction theory of formal connections (or Higgs fields) on a formal principal bundle with parahoric structures, which generalizes Babbitt-Varadarajan's result for the case without parahoric structures [5] and Boalch's result for the case of regular singularity [9]. As applications, we prove the equivalence between extrinsic definition and intrinsic definition of regular singularity and provide a criterion of relative regularity for formal connections, and also demonstrate a parahoric version of Frenkel-Zhu's Borel reduction theorem of formal connections [23].
形式连接(或希格斯场)的准还原理论
在本文中,我们建立了形式连接(或希格斯场)在具有准结构的形式主束上的准结构还原理论,它概括了巴比特-瓦拉达拉詹(Babbitt-Varadarajan)对无准结构情况的结果[5]和波尔奇(Boalch)对正则奇异性情况的结果[9]。作为应用,我们证明了正则奇异性的外在定义和内在定义之间的等价性,并提供了形式连接的相对正则性标准,还证明了 Frenkel-Zhu 的形式连接的 Borel 还原定理[23]的解析版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信