Double star arrangement and the pointed multinet

Yongqiang Liu, Wentao Xie
{"title":"Double star arrangement and the pointed multinet","authors":"Yongqiang Liu, Wentao Xie","doi":"arxiv-2409.04032","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{A}$ be a hyperplane arrangement in a complex projective space.\nIt is an open question if the degree one cohomology jump loci (with complex\ncoefficients) are determined by the combinatorics of $\\mathcal{A}$. By the work\nof Falk and Yuzvinsky \\cite{FY}, all the irreducible components passing through\nthe origin are determined by the multinet structure, which are combinatorially\ndetermined. Denham and Suciu introduced the pointed multinet structure to\nobtain examples of arrangements with translated positive-dimensional components\nin the degree one cohomology jump loci \\cite{DS}. Suciu asked the question if\nall translated positive-dimensional components appear in this manner\n\\cite{Suc14}. In this paper, we show that the double star arrangement\nintroduced by Ishibashi, Sugawara and Yoshinaga \\cite[Example 3.2]{ISY22} gives\na negative answer to this question.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathcal{A}$ be a hyperplane arrangement in a complex projective space. It is an open question if the degree one cohomology jump loci (with complex coefficients) are determined by the combinatorics of $\mathcal{A}$. By the work of Falk and Yuzvinsky \cite{FY}, all the irreducible components passing through the origin are determined by the multinet structure, which are combinatorially determined. Denham and Suciu introduced the pointed multinet structure to obtain examples of arrangements with translated positive-dimensional components in the degree one cohomology jump loci \cite{DS}. Suciu asked the question if all translated positive-dimensional components appear in this manner \cite{Suc14}. In this paper, we show that the double star arrangement introduced by Ishibashi, Sugawara and Yoshinaga \cite[Example 3.2]{ISY22} gives a negative answer to this question.
双星排列和尖顶多网
让 $\mathcal{A}$ 是复投影空间中的一个超平面排列。$\mathcal{A}$ 的组合学是否决定了一度同调跃迁位置(具有复系数),这是一个悬而未决的问题。根据 Falk 和 Yuzvinsky \cite{FY}的研究,所有通过原点的不可还原成分都是由多网结构决定的,而多网结构是由组合决定的。德纳姆和苏修引入尖多内特结构,以获得在一度同调跃迁位置(the degree one cohomology jump loci \cite{DS})中具有翻译正维成分的排列的例子。Suciu 提出了一个问题:是否所有翻译的正维成分都以这种方式出现?在本文中,我们证明了石桥、菅原和吉永引入的双星排列 (\cite[例 3.2]{ISY22} 给出了这个问题的否定答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信