{"title":"Gromov--Witten Invariants of Non-Convex Complete Intersections in Weighted Projective Stacks","authors":"Felix Janda, Nawaz Sultani, Yang Zhou","doi":"arxiv-2409.06193","DOIUrl":null,"url":null,"abstract":"In this paper we compute genus 0 orbifold Gromov--Witten invariants of\nCalabi--Yau threefold complete intersections in weighted projective stacks,\nregardless of convexity conditions. The traditional quantumn Lefschetz\nprinciple may fail even for invariants with ambient insertions. Using quasimap\nwall-crossing, we are able to compute invariants with insertions from a\nspecific subring of the Chen--Ruan cohomology, which contains all the ambient\ncohomology classes. Quasimap wall-crossing gives a mirror theorem expressing the I-function in\nterms of the J-function via a mirror map. The key of this paper is to find a\nsuitable GIT presentation of the target space, so that the mirror map is\ninvertible. An explicit formula for the I-function is given for all those\ntarget spaces and many examples with explicit computations of invariants are\nprovided.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we compute genus 0 orbifold Gromov--Witten invariants of
Calabi--Yau threefold complete intersections in weighted projective stacks,
regardless of convexity conditions. The traditional quantumn Lefschetz
principle may fail even for invariants with ambient insertions. Using quasimap
wall-crossing, we are able to compute invariants with insertions from a
specific subring of the Chen--Ruan cohomology, which contains all the ambient
cohomology classes. Quasimap wall-crossing gives a mirror theorem expressing the I-function in
terms of the J-function via a mirror map. The key of this paper is to find a
suitable GIT presentation of the target space, so that the mirror map is
invertible. An explicit formula for the I-function is given for all those
target spaces and many examples with explicit computations of invariants are
provided.