Gromov--Witten Invariants of Non-Convex Complete Intersections in Weighted Projective Stacks

Felix Janda, Nawaz Sultani, Yang Zhou
{"title":"Gromov--Witten Invariants of Non-Convex Complete Intersections in Weighted Projective Stacks","authors":"Felix Janda, Nawaz Sultani, Yang Zhou","doi":"arxiv-2409.06193","DOIUrl":null,"url":null,"abstract":"In this paper we compute genus 0 orbifold Gromov--Witten invariants of\nCalabi--Yau threefold complete intersections in weighted projective stacks,\nregardless of convexity conditions. The traditional quantumn Lefschetz\nprinciple may fail even for invariants with ambient insertions. Using quasimap\nwall-crossing, we are able to compute invariants with insertions from a\nspecific subring of the Chen--Ruan cohomology, which contains all the ambient\ncohomology classes. Quasimap wall-crossing gives a mirror theorem expressing the I-function in\nterms of the J-function via a mirror map. The key of this paper is to find a\nsuitable GIT presentation of the target space, so that the mirror map is\ninvertible. An explicit formula for the I-function is given for all those\ntarget spaces and many examples with explicit computations of invariants are\nprovided.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we compute genus 0 orbifold Gromov--Witten invariants of Calabi--Yau threefold complete intersections in weighted projective stacks, regardless of convexity conditions. The traditional quantumn Lefschetz principle may fail even for invariants with ambient insertions. Using quasimap wall-crossing, we are able to compute invariants with insertions from a specific subring of the Chen--Ruan cohomology, which contains all the ambient cohomology classes. Quasimap wall-crossing gives a mirror theorem expressing the I-function in terms of the J-function via a mirror map. The key of this paper is to find a suitable GIT presentation of the target space, so that the mirror map is invertible. An explicit formula for the I-function is given for all those target spaces and many examples with explicit computations of invariants are provided.
加权投影堆栈中非凸完全相交的格罗莫夫--维滕不变式
在本文中,我们不考虑凸性条件,计算了加权投影堆栈中Calabi--Yau 三折完全相交的0 属轨道Gromov--Witten不变式。传统的量柱拉夫谢茨原理甚至可能对有环境插入的不变式失效。利用准映射穿墙术,我们可以从陈-阮同构的特定子环计算有插入的不变量,该子环包含所有环境同构类。准映射穿墙给出了一个镜像定理,通过镜像映射表达了 I 函数与 J 函数之间的关系。本文的关键在于找到目标空间的合适 GIT 呈现,从而使镜像映射是可逆的。本文给出了所有目标空间的 I 函数的明确公式,并提供了许多明确计算不变式的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信