Andriy Regeta, Christian Urech, Immanuel van Santen
{"title":"Group Theoretical Characterizations of Rationality","authors":"Andriy Regeta, Christian Urech, Immanuel van Santen","doi":"arxiv-2409.07864","DOIUrl":null,"url":null,"abstract":"Let X be an irreducible variety and Bir(X) its group of birational\ntransformations. We show that the group structure of Bir(X) determines whether\nX is rational and whether X is ruled. Additionally, we prove that any Borel subgroup of Bir(X) has derived length\nat most twice the dimension of X, with equality occurring if and only if X is\nrational and the Borel subgroup is standard. We also provide examples of\nnon-standard Borel subgroups of Bir(P^n) and Aut(A^n), thereby resolving\nconjectures by Popov and Furter-Poloni.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let X be an irreducible variety and Bir(X) its group of birational
transformations. We show that the group structure of Bir(X) determines whether
X is rational and whether X is ruled. Additionally, we prove that any Borel subgroup of Bir(X) has derived length
at most twice the dimension of X, with equality occurring if and only if X is
rational and the Borel subgroup is standard. We also provide examples of
non-standard Borel subgroups of Bir(P^n) and Aut(A^n), thereby resolving
conjectures by Popov and Furter-Poloni.