Group Theoretical Characterizations of Rationality

Andriy Regeta, Christian Urech, Immanuel van Santen
{"title":"Group Theoretical Characterizations of Rationality","authors":"Andriy Regeta, Christian Urech, Immanuel van Santen","doi":"arxiv-2409.07864","DOIUrl":null,"url":null,"abstract":"Let X be an irreducible variety and Bir(X) its group of birational\ntransformations. We show that the group structure of Bir(X) determines whether\nX is rational and whether X is ruled. Additionally, we prove that any Borel subgroup of Bir(X) has derived length\nat most twice the dimension of X, with equality occurring if and only if X is\nrational and the Borel subgroup is standard. We also provide examples of\nnon-standard Borel subgroups of Bir(P^n) and Aut(A^n), thereby resolving\nconjectures by Popov and Furter-Poloni.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be an irreducible variety and Bir(X) its group of birational transformations. We show that the group structure of Bir(X) determines whether X is rational and whether X is ruled. Additionally, we prove that any Borel subgroup of Bir(X) has derived length at most twice the dimension of X, with equality occurring if and only if X is rational and the Borel subgroup is standard. We also provide examples of non-standard Borel subgroups of Bir(P^n) and Aut(A^n), thereby resolving conjectures by Popov and Furter-Poloni.
理性的群体理论特征
设 X 是不可还原 variety,Bir(X) 是其双变换群。我们证明,Bir(X) 的群结构决定了 X 是否有理以及 X 是否有规则。此外,我们还证明了 Bir(X) 的任何 Borel 子群的派生长度最多为 X 维数的两倍,只有当且仅当 X 是有理的且 Borel 子群是标准群时才会发生相等。我们还举例说明了 Bir(P^n) 和 Aut(A^n) 的非标准 Borel 子群,从而解决了 Popov 和 Furter-Poloni 的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信