Rational weighted projective hypersurfaces

Louis Esser
{"title":"Rational weighted projective hypersurfaces","authors":"Louis Esser","doi":"arxiv-2409.01333","DOIUrl":null,"url":null,"abstract":"A very general hypersurface of dimension $n$ and degree $d$ in complex\nprojective space is rational if $d \\leq 2$, but is expected to be irrational\nfor all $n, d \\geq 3$. Hypersurfaces in weighted projective space with degree\nsmall relative to the weights are likewise rational. In this paper, we\nintroduce rationality constructions for weighted hypersurfaces of higher degree\nthat provide many new rational examples over any field. We answer in the\naffirmative a question of T. Okada about the existence of very general terminal\nFano rational weighted hypersurfaces in all dimensions $n \\geq 6$.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A very general hypersurface of dimension $n$ and degree $d$ in complex projective space is rational if $d \leq 2$, but is expected to be irrational for all $n, d \geq 3$. Hypersurfaces in weighted projective space with degree small relative to the weights are likewise rational. In this paper, we introduce rationality constructions for weighted hypersurfaces of higher degree that provide many new rational examples over any field. We answer in the affirmative a question of T. Okada about the existence of very general terminal Fano rational weighted hypersurfaces in all dimensions $n \geq 6$.
有理加权投影超曲面
在复投影空间中,维数为 $n$ 且度为 $d$ 的一般超曲面在 $d \leq 2$ 时是有理的,但在所有 $n, d \geq 3$ 时预计是无理的。在加权投影空间中,相对于权数而言度数很小的超曲面同样是有理的。在本文中,我们引入了度数更高的加权超曲面的合理性构造,为任意域提供了许多新的合理例子。我们肯定地回答了冈田泰(T. Okada)关于在所有维数 $n \geq 6$ 中存在非常一般的末端法诺有理加权超曲面的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信