Periods of Real Biextensions

Richard Hain
{"title":"Periods of Real Biextensions","authors":"Richard Hain","doi":"arxiv-2408.13997","DOIUrl":null,"url":null,"abstract":"A real biextension is a real mixed Hodge structure that is an extension of\nR(0) by a mixed Hodge structure with weights $-1$ and $-2$. A unipotent real\nbiextension over an algebraic manifold is a variation of mixed Hodge structure\nover it, each of whose fibers is a real biextension and whose weight graded\nquotients are do not vary. We show that if a unipotent real biextension has non\nabelian monodromy, then its ``general fiber'' does not split. This result is a\ntool for investigating the boundary behaviour of normal functions and is\napplied in arXiv:2408.07809 to study the boundary behaviour of the normal\nfunction of the Ceresa cycle.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A real biextension is a real mixed Hodge structure that is an extension of R(0) by a mixed Hodge structure with weights $-1$ and $-2$. A unipotent real biextension over an algebraic manifold is a variation of mixed Hodge structure over it, each of whose fibers is a real biextension and whose weight graded quotients are do not vary. We show that if a unipotent real biextension has non abelian monodromy, then its ``general fiber'' does not split. This result is a tool for investigating the boundary behaviour of normal functions and is applied in arXiv:2408.07809 to study the boundary behaviour of the normal function of the Ceresa cycle.
实际双延期的周期
实双延是实混合霍奇结构,它是权值为$-1$和$-2$的混合霍奇结构对R(0)的扩展。代数流形上的单能实双延是混合霍奇结构在代数流形上的变异,其每个纤维都是实双延,其权重梯度平方不变化。我们证明,如果一个单能实双延具有非阿贝尔单色性,那么它的 "一般纤维 "不会分裂。这一结果是研究正函数边界行为的工具,并在 arXiv:2408.07809 中被应用于研究 Ceresa 循环的正函数边界行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信