The Degeneracy Loci for Smooth Moduli of Sheaves

Yu Zhao
{"title":"The Degeneracy Loci for Smooth Moduli of Sheaves","authors":"Yu Zhao","doi":"arxiv-2408.14021","DOIUrl":null,"url":null,"abstract":"Let S be a smooth projective surface over $\\mathbb{C}$. We prove that, under\ncertain technical assumptions, the degeneracy locus of the universal sheaf over\nthe moduli space of stable sheaves is either empty or an irreducible\nCohen-Macaulay variety of the expected dimension. We also provide a criterion\nfor when the degeneracy locus is non-empty. This result generalizes the work of\nBayer, Chen, and Jiang for the Hilbert scheme of points on surfaces. The above result is a special case of a general phenomenon: for a perfect\ncomplex of Tor-amplitude [0,1], the geometry of the degeneracy locus is closely\nrelated to the geometry of the derived Grassmannian. We analyze their\nbirational geometry and relate it to the incidence varieties of derived\nGrassmannians. As a corollary, we prove a statement previously claimed by the\nauthor in arXiv:2408.06860.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let S be a smooth projective surface over $\mathbb{C}$. We prove that, under certain technical assumptions, the degeneracy locus of the universal sheaf over the moduli space of stable sheaves is either empty or an irreducible Cohen-Macaulay variety of the expected dimension. We also provide a criterion for when the degeneracy locus is non-empty. This result generalizes the work of Bayer, Chen, and Jiang for the Hilbert scheme of points on surfaces. The above result is a special case of a general phenomenon: for a perfect complex of Tor-amplitude [0,1], the geometry of the degeneracy locus is closely related to the geometry of the derived Grassmannian. We analyze their birational geometry and relate it to the incidence varieties of derived Grassmannians. As a corollary, we prove a statement previously claimed by the author in arXiv:2408.06860.
剪切的光滑模数的退化位置
设 S 是$\mathbb{C}$上的光滑投影面。我们证明,在某些技术假设下,稳定剪子模空间上的普遍剪子的退化位点要么是空的,要么是预期维数的不可还原的科恩-麦考莱(Cohen-Macaulay)簇。我们还提供了一个判据来判定何时退化位置是非空的。这一结果推广了拜尔、陈和江对曲面上点的希尔伯特方案的研究。上述结果是一个普遍现象的特例:对于 Tor 振幅 [0,1] 的完美复数,退化位点的几何与衍生格拉斯曼几何密切相关。我们分析了它们的配位几何,并将其与派生格拉斯曼的入射品种联系起来。作为推论,我们证明了作者之前在 arXiv:2408.06860 中提出的一个声明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信