The D-equivalence conjecture for hyper-Kähler varieties via hyperholomorphic bundles

Davesh Maulik, Junliang Shen, Qizheng Yin
{"title":"The D-equivalence conjecture for hyper-Kähler varieties via hyperholomorphic bundles","authors":"Davesh Maulik, Junliang Shen, Qizheng Yin","doi":"arxiv-2408.14775","DOIUrl":null,"url":null,"abstract":"We show that birational hyper-K\\\"ahler varieties of $K3^{[n]}$-type are\ntwisted derived equivalent with respect to some Brauer class. Furthermore, if a\n$K3^{[n]}$-type variety X admits a divisor class of divisibility 1 whose norm\nsatisfies a congruence condition modulo 4, we show that any hyper-K\\\"ahler\nvariety birational to X is derived equivalent to X. This verifies new cases of\nthe D-equivalence conjecture in higher dimension. The Fourier-Mukai kernels of\nour (twisted) derived equivalences are constructed from Markman's projectively\nhyperholomorphic bundles.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that birational hyper-K\"ahler varieties of $K3^{[n]}$-type are twisted derived equivalent with respect to some Brauer class. Furthermore, if a $K3^{[n]}$-type variety X admits a divisor class of divisibility 1 whose norm satisfies a congruence condition modulo 4, we show that any hyper-K\"ahler variety birational to X is derived equivalent to X. This verifies new cases of the D-equivalence conjecture in higher dimension. The Fourier-Mukai kernels of our (twisted) derived equivalences are constructed from Markman's projectively hyperholomorphic bundles.
通过超holomorphic束的超凯勒变体的D等价猜想
我们证明,$K3^{[n]}$型的双向超K/"ahler "综关于某个布劳尔类是扭曲派生等价的。此外,如果$K3^{[n]}$型 variety X 承认一个可分性为 1 的因子类,其规范满足 modulo 4 的全等条件,我们证明了任何与 X 双向的超(hyper-K\"ahl)ervariety 都与 X 派生等价。我们的(扭曲的)派生等价的傅里叶-穆凯核是由马克曼的投影超holomorphic束构造的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信