Cohomological integrality for symmetric quotient stacks

Lucien Hennecart
{"title":"Cohomological integrality for symmetric quotient stacks","authors":"Lucien Hennecart","doi":"arxiv-2408.15786","DOIUrl":null,"url":null,"abstract":"In this paper, we establish the sheafified version of the cohomological\nintegrality conjecture for stacks obtained as a quotient of a smooth affine\nsymmetric algebraic variety by a reductive algebraic group equipped with an\ninvariant function. A crucial step is the definition of the BPS sheaf as a\ncomplex of monodromic mixed Hodge modules. We prove the purity of the BPS sheaf\nwhen the situation arises from a smooth affine weakly symplectic algebraic\nvariety with a weak moment map. This situation gives local models for 1-Artin\nderived stacks with self-dual cotangent complex. We then apply these results to\nprove a conjecture of Halpern-Leistner predicting the purity of the Borel-Moore\nhomology of $0$-shifted symplectic stacks (or more generally, derived stacks\nwith self-dual cotangent complex) having a proper good moduli space. One\nstriking application is the purity of the Borel--Moore homology of the moduli\nstack of principal Higgs bundles over a smooth projective curve for a reductive\ngroup.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish the sheafified version of the cohomological integrality conjecture for stacks obtained as a quotient of a smooth affine symmetric algebraic variety by a reductive algebraic group equipped with an invariant function. A crucial step is the definition of the BPS sheaf as a complex of monodromic mixed Hodge modules. We prove the purity of the BPS sheaf when the situation arises from a smooth affine weakly symplectic algebraic variety with a weak moment map. This situation gives local models for 1-Artin derived stacks with self-dual cotangent complex. We then apply these results to prove a conjecture of Halpern-Leistner predicting the purity of the Borel-Moore homology of $0$-shifted symplectic stacks (or more generally, derived stacks with self-dual cotangent complex) having a proper good moduli space. One striking application is the purity of the Borel--Moore homology of the moduli stack of principal Higgs bundles over a smooth projective curve for a reductive group.
对称商堆栈的同调积分性
在本文中,我们建立了堆栈的同调积分猜想的剪切化版本,堆栈是光滑的仿射对称代数簇与配备有不变函数的还原代数群的商。关键的一步是定义 BPS Sheaf 为单色混合霍奇模块的复数。我们证明了 BPS Sheaf 的纯粹性,当这种情况产生于具有弱矩映射的光滑仿射弱交点代数变量时。这种情况给出了具有自双余切复数的 1-Artinderived 栈的局部模型。然后,我们应用这些结果来证明哈尔彭-莱斯特纳的一个猜想,即具有适当良好模空间的 $0$ 移位交映堆栈(或更广义地说,具有自双余切复数的派生堆栈)的 Borel-Moorehomology 的纯度。一个引人注目的应用是还原组在光滑投影曲线上的主希格斯束的模叠的玻雷-摩尔同源性的纯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信