A superpotential for Grassmannian Schubert varieties

Konstanze Rietsch, Lauren Williams
{"title":"A superpotential for Grassmannian Schubert varieties","authors":"Konstanze Rietsch, Lauren Williams","doi":"arxiv-2409.00734","DOIUrl":null,"url":null,"abstract":"While mirror symmetry for flag varieties and Grassmannians has been\nextensively studied, Schubert varieties in the Grassmannian are singular, and\nhence standard mirror symmetry statements are not well-defined. Nevertheless,\nin this article we introduce a ``superpotential'' $W^{\\lambda}$ for each\nGrassmannian Schubert variety $X_{\\lambda}$, generalizing the Marsh-Rietsch\nsuperpotential for Grassmannians, and we show that $W^{\\lambda}$ governs many\ntoric degenerations of $X_{\\lambda}$. We also generalize the ``polytopal mirror\ntheorem'' for Grassmannians from our previous work: namely, for any cluster\nseed $G$ for $X_{\\lambda}$, we construct a corresponding Newton-Okounkov convex\nbody $\\Delta_G^{\\lambda}$, and show that it coincides with the superpotential\npolytope $\\Gamma_G^{\\lambda}$, that is, it is cut out by the inequalities\nobtained by tropicalizing an associated Laurent expansion of $W^{\\lambda}$.\nThis gives us a toric degeneration of the Schubert variety $X_{\\lambda}$ to the\n(singular) toric variety $Y(\\mathcal{N}_{\\lambda})$ of the Newton-Okounkov\nbody. Finally, for a particular cluster seed $G=G^\\lambda_{\\mathrm{rec}}$ we\nshow that the toric variety $Y(\\mathcal{N}_{\\lambda})$ has a small toric\ndesingularisation, and we describe an intermediate partial desingularisation\n$Y(\\mathcal{F}_\\lambda)$ that is Gorenstein Fano. Many of our results extend to\nmore general varieties in the Grassmannian.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While mirror symmetry for flag varieties and Grassmannians has been extensively studied, Schubert varieties in the Grassmannian are singular, and hence standard mirror symmetry statements are not well-defined. Nevertheless, in this article we introduce a ``superpotential'' $W^{\lambda}$ for each Grassmannian Schubert variety $X_{\lambda}$, generalizing the Marsh-Rietsch superpotential for Grassmannians, and we show that $W^{\lambda}$ governs many toric degenerations of $X_{\lambda}$. We also generalize the ``polytopal mirror theorem'' for Grassmannians from our previous work: namely, for any cluster seed $G$ for $X_{\lambda}$, we construct a corresponding Newton-Okounkov convex body $\Delta_G^{\lambda}$, and show that it coincides with the superpotential polytope $\Gamma_G^{\lambda}$, that is, it is cut out by the inequalities obtained by tropicalizing an associated Laurent expansion of $W^{\lambda}$. This gives us a toric degeneration of the Schubert variety $X_{\lambda}$ to the (singular) toric variety $Y(\mathcal{N}_{\lambda})$ of the Newton-Okounkov body. Finally, for a particular cluster seed $G=G^\lambda_{\mathrm{rec}}$ we show that the toric variety $Y(\mathcal{N}_{\lambda})$ has a small toric desingularisation, and we describe an intermediate partial desingularisation $Y(\mathcal{F}_\lambda)$ that is Gorenstein Fano. Many of our results extend to more general varieties in the Grassmannian.
格拉斯曼舒伯特变体的超势能
虽然对旗变和格拉斯曼的镜像对称性已有广泛研究,但格拉斯曼中的舒伯特变是奇异的,因此标准的镜像对称性声明并不明确。然而,在这篇文章中,我们为每个格拉斯曼中的舒伯特变$X_{\lambda}$引入了一个 "超势能"$W^{\lambda}$,概括了格拉斯曼的马什-里奇超势能,并证明了$W^{\lambda}$支配着$X_{\lambda}$的多子退化。我们还推广了先前工作中针对格拉斯曼的 "多顶镜像定理":即对于 $X_{\lambda}$ 的任何簇种子 $G$,我们构造了一个相应的牛顿-奥孔科夫凸体 $/Delta_G^{/lambda}$,并证明它与超势能多面体 $\Gamma_G^{\lambda}$ 重合,也就是说,它是通过对 $W^{\lambda}$ 的相关劳伦展开进行热带化而得到的不等式切割出来的。这样,我们就得到了舒伯特变元 $X_{\lambda}$ 到牛顿-奥孔科夫体(奇异)变元 $Y(\mathcal{N}_{\lambda})$的环状退化。最后,对于一个特定的簇种子 $G=G^\lambda_{\mathrm{rec}}$,我们展示了环综 $Y(\mathcal{N}_\{lambda})$ 有一个小的环去奇化,并且我们描述了一个中间部分去奇化 $Y(\mathcal{F}_\lambda)$,它是戈伦斯坦法诺的。我们的许多结果都可以推广到格拉斯曼中更多的一般 varieties 上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信