Deep learning solution of optimal reinsurance‐investment strategies with inside information and multiple risks

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Fanyi Peng, Ming Yan, Shuhua Zhang
{"title":"Deep learning solution of optimal reinsurance‐investment strategies with inside information and multiple risks","authors":"Fanyi Peng, Ming Yan, Shuhua Zhang","doi":"10.1002/mma.10465","DOIUrl":null,"url":null,"abstract":"This paper investigates an optimal investment‐reinsurance problem for an insurer who possesses inside information regarding the future realizations of the claim process and risky asset process. The insurer sells insurance contracts, has access to proportional reinsurance business, and invests in a financial market consisting of three assets: one risk‐free asset, one bond, and one stock. Here, the nominal interest rate is characterized by the Vasicek model, and the stock price is driven by Heston's stochastic volatility model. Applying the enlargement of filtration techniques, we establish the optimal control problem in which an insurer maximizes the expected power utility of the terminal wealth. By using the dynamic programming principle, the problem can be changed to four‐dimensional Hamilton–Jacobi–Bellman equation. In addition, we adopt a deep neural network method by which the partial differential equation is converted to two backward stochastic differential equations and solved by a stochastic gradient descent‐type optimization procedure. Numerical results obtained using TensorFlow in Python and the economic behavior of the approximate optimal strategy and the approximate optimal utility of the insurer are analyzed.","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"8 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10465","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates an optimal investment‐reinsurance problem for an insurer who possesses inside information regarding the future realizations of the claim process and risky asset process. The insurer sells insurance contracts, has access to proportional reinsurance business, and invests in a financial market consisting of three assets: one risk‐free asset, one bond, and one stock. Here, the nominal interest rate is characterized by the Vasicek model, and the stock price is driven by Heston's stochastic volatility model. Applying the enlargement of filtration techniques, we establish the optimal control problem in which an insurer maximizes the expected power utility of the terminal wealth. By using the dynamic programming principle, the problem can be changed to four‐dimensional Hamilton–Jacobi–Bellman equation. In addition, we adopt a deep neural network method by which the partial differential equation is converted to two backward stochastic differential equations and solved by a stochastic gradient descent‐type optimization procedure. Numerical results obtained using TensorFlow in Python and the economic behavior of the approximate optimal strategy and the approximate optimal utility of the insurer are analyzed.
利用内部信息和多重风险的深度学习解决方案,优化再保险投资策略
本文研究的是一个保险人的最优投资-再保险问题,该保险人拥有关于索赔过程和风险资产过程未来实现的内部信息。该保险公司销售保险合同,获得按比例再保险业务,并投资于由三种资产组成的金融市场:一种无风险资产、一种债券和一种股票。在此,名义利率由 Vasicek 模型表征,股票价格由 Heston 随机波动模型驱动。应用放大过滤技术,我们建立了一个最优控制问题,在这个问题中,保险人最大化了终端财富的预期功率效用。利用动态编程原理,该问题可转化为四维 Hamilton-Jacobi-Bellman 方程。此外,我们还采用了一种深度神经网络方法,将偏微分方程转换为两个后向随机微分方程,并通过随机梯度下降式优化程序进行求解。我们使用 Python 中的 TensorFlow 获得了数值结果,并分析了近似最优策略的经济行为和保险人的近似最优效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信