Parallel inertial forward–backward splitting methods for solving variational inequality problems with variational inclusion constraints

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Tran Van Thang, Ha Manh Tien
{"title":"Parallel inertial forward–backward splitting methods for solving variational inequality problems with variational inclusion constraints","authors":"Tran Van Thang,&nbsp;Ha Manh Tien","doi":"10.1002/mma.10356","DOIUrl":null,"url":null,"abstract":"<p>The inertial forward–backward splitting algorithm can be considered as a modified form of the forward–backward algorithm for variational inequality problems with monotone and Lipschitz continuous cost mappings. By using parallel and inertial techniques and the forward–backward splitting algorithm, in this paper, we propose a new parallel inertial forward–backward splitting algorithm for solving variational inequality problems, where the constraints are the intersection of common solution sets of a finite family of variational inclusion problems. Then, strong convergence of proposed iteration sequences is showed under standard assumptions imposed on cost mappings in a real Hilbert space. Finally, some numerical experiments demonstrate the reliability and benefits of the proposed algorithm.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 1","pages":"748-764"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10356","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The inertial forward–backward splitting algorithm can be considered as a modified form of the forward–backward algorithm for variational inequality problems with monotone and Lipschitz continuous cost mappings. By using parallel and inertial techniques and the forward–backward splitting algorithm, in this paper, we propose a new parallel inertial forward–backward splitting algorithm for solving variational inequality problems, where the constraints are the intersection of common solution sets of a finite family of variational inclusion problems. Then, strong convergence of proposed iteration sequences is showed under standard assumptions imposed on cost mappings in a real Hilbert space. Finally, some numerical experiments demonstrate the reliability and benefits of the proposed algorithm.

用于求解具有变式包容约束的变式不等式问题的并行惯性前向后向分裂方法
惯性前向后拆分算法可以看作是前向后算法的一种改进形式,用于求解具有单调和Lipschitz连续代价映射的变分不等式问题。本文利用并行和惯性技术以及前向后分算法,提出了一种新的并行惯性前向后分算法,用于求解变分不等式问题,其中约束条件是有限变分包含问题族的公共解集的交集。然后,在对实希尔伯特空间中的代价映射施加标准假设的情况下,证明了所提出的迭代序列具有很强的收敛性。最后,一些数值实验证明了所提算法的可靠性和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信