Mrinalini Manna, Balakrishnan Rengasamy, Malireddy K. Reddy, Alok Krishna Sinha
{"title":"Revisiting rice transformation for a fail-safe protocol and its application for various gene functional and molecular studies","authors":"Mrinalini Manna, Balakrishnan Rengasamy, Malireddy K. Reddy, Alok Krishna Sinha","doi":"10.1007/s00344-024-11486-6","DOIUrl":null,"url":null,"abstract":"<p>An efficient transformation and regeneration system is prerequisite for gene functional studies in rice, the staple food crop of the Asian subcontinent. Despite the availability of a large number of rice transformation protocols, it is hard to find a simple and minimum input based, but fail-safe protocol that ensures zero number of escapes (or the non-transformants). The fear of obtaining an unpredictable percentage of escapes at the end of rice tissue culture prompts carrying out multiple batches of transformation which not only consumes costly resources and time but also burdens one with screening of a large number of tissue culture derived plants. In the present study, we have described a simple but fail-safe rice transformation protocol for functional validation of the genes by overexpression and CRISPR-Cas9 mediated gene knockout systems. By taking the advantage of high transformability of japonica rice tissues, we have also revealed that the present rice transformation protocol can be effectively employed to visualize protein localization in various subcellular compartments of rice root and callus tissues, an alternative to conventional tobacco/onion peel infiltration or protoplast transformation which are either time consuming or tricky. Additionally, the paper also discusses the importance of Southern blotting in gene overexpression studies, utility of non-conventional antibiotic selection approaches and significance of sgRNA designing for gene knockout studies in rice. Various troubleshooting advice are also being presented. Overall, the present protocol might serve as an excellent guide for functional validation of several genes present in the rice genome waiting to be explored.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":"5 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00344-024-11486-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
An efficient transformation and regeneration system is prerequisite for gene functional studies in rice, the staple food crop of the Asian subcontinent. Despite the availability of a large number of rice transformation protocols, it is hard to find a simple and minimum input based, but fail-safe protocol that ensures zero number of escapes (or the non-transformants). The fear of obtaining an unpredictable percentage of escapes at the end of rice tissue culture prompts carrying out multiple batches of transformation which not only consumes costly resources and time but also burdens one with screening of a large number of tissue culture derived plants. In the present study, we have described a simple but fail-safe rice transformation protocol for functional validation of the genes by overexpression and CRISPR-Cas9 mediated gene knockout systems. By taking the advantage of high transformability of japonica rice tissues, we have also revealed that the present rice transformation protocol can be effectively employed to visualize protein localization in various subcellular compartments of rice root and callus tissues, an alternative to conventional tobacco/onion peel infiltration or protoplast transformation which are either time consuming or tricky. Additionally, the paper also discusses the importance of Southern blotting in gene overexpression studies, utility of non-conventional antibiotic selection approaches and significance of sgRNA designing for gene knockout studies in rice. Various troubleshooting advice are also being presented. Overall, the present protocol might serve as an excellent guide for functional validation of several genes present in the rice genome waiting to be explored.
期刊介绍:
The Journal of Plant Growth Regulation is an international publication featuring original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research on various aspects of plant growth and development using hormonal, physiological, environmental, genetic, biophysical, developmental and/or molecular approaches.
The journal also publishes timely reviews on highly relevant areas and/or studies in plant growth and development, including interdisciplinary work with an emphasis on plant growth, plant hormones and plant pathology or abiotic stress.
In addition, the journal features occasional thematic issues with special guest editors, as well as brief communications describing novel techniques and meeting reports.
The journal is unlikely to accept manuscripts that are purely descriptive in nature or reports work with simple tissue culture without attempting to investigate the underlying mechanisms of plant growth regulation, those that focus exclusively on microbial communities, or deal with the (elicitation by plant hormones of) synthesis of secondary metabolites.