Viscoelasticity, logarithmic stresses, and tensorial transport equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gennaro Ciampa, Giulio G. Giusteri, Alessio G. Soggiu
{"title":"Viscoelasticity, logarithmic stresses, and tensorial transport equations","authors":"Gennaro Ciampa, Giulio G. Giusteri, Alessio G. Soggiu","doi":"10.1002/mma.10469","DOIUrl":null,"url":null,"abstract":"We introduce models for viscoelastic materials, both solids and fluids, based on logarithmic stresses to capture the elastic contribution to the material response. The matrix logarithm allows to link the measures of strain, that naturally belong to a multiplicative group of linear transformations, to stresses, that are additive elements of a linear space of tensors. As regards the viscous stresses, we simply assume a Newtonian constitutive law, but the presence of elasticity and plastic relaxation makes the materials non‐Newtonian. Our aim is to discuss the existence of weak solutions for the corresponding systems of partial differential equations in the nonlinear large‐deformation regime. The main difficulties arise in the analysis of the transport equations necessary to describe the evolution of tensorial measures of strain. For the solid model, we only need to consider the equation for the left Cauchy–Green tensor, while for the fluid model, we add an evolution equation for the elastically‐relaxed strain. Due to the tensorial nature of the fields, available techniques cannot be applied to the analysis of such transport equations. To cope with this, we introduce the notion of charted weak solution, based on non‐standard a priori estimates, that lead to a global‐in‐time existence of solutions for the viscoelastic models in the natural functional setting associated with the energy inequality.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce models for viscoelastic materials, both solids and fluids, based on logarithmic stresses to capture the elastic contribution to the material response. The matrix logarithm allows to link the measures of strain, that naturally belong to a multiplicative group of linear transformations, to stresses, that are additive elements of a linear space of tensors. As regards the viscous stresses, we simply assume a Newtonian constitutive law, but the presence of elasticity and plastic relaxation makes the materials non‐Newtonian. Our aim is to discuss the existence of weak solutions for the corresponding systems of partial differential equations in the nonlinear large‐deformation regime. The main difficulties arise in the analysis of the transport equations necessary to describe the evolution of tensorial measures of strain. For the solid model, we only need to consider the equation for the left Cauchy–Green tensor, while for the fluid model, we add an evolution equation for the elastically‐relaxed strain. Due to the tensorial nature of the fields, available techniques cannot be applied to the analysis of such transport equations. To cope with this, we introduce the notion of charted weak solution, based on non‐standard a priori estimates, that lead to a global‐in‐time existence of solutions for the viscoelastic models in the natural functional setting associated with the energy inequality.
粘弹性、对数应力和张量传输方程
我们引入了基于对数应力的粘弹性材料(包括固体和流体)模型,以捕捉材料响应的弹性贡献。矩阵对数允许将自然属于线性变换乘法组的应变测量值与应力联系起来,应力是张量线性空间的加法元素。至于粘性应力,我们只需假设牛顿构成定律,但弹性和塑性松弛的存在使材料成为非牛顿材料。我们的目的是讨论相应的偏微分方程系统在非线性大变形体系中是否存在弱解。主要困难在于分析描述张量应变演变所需的传输方程。对于固体模型,我们只需要考虑左 Cauchy-Green 张量的方程,而对于流体模型,我们还需要考虑弹性松弛应变的演化方程。由于场的张量性质,现有技术无法用于分析此类传输方程。为了解决这个问题,我们引入了基于非标准先验估计的图表弱解概念,从而在与能量不等式相关的自然函数设置中,为粘弹性模型找到了全局时间内存在的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信