Akanksha Gandhi, Michael Reichelt, Divya Goyal, Jyothilakshmi Vadassery, Ralf Oelmüller
{"title":"Trichoderma harzianum Protects the Arabidopsis Salt Overly Sensitive 1 Mutant Against Salt Stress","authors":"Akanksha Gandhi, Michael Reichelt, Divya Goyal, Jyothilakshmi Vadassery, Ralf Oelmüller","doi":"10.1007/s00344-024-11474-w","DOIUrl":null,"url":null,"abstract":"<p>Salt stress is one of the major environmental factors that limits crop productivity. To mount an effective response to cope with salt stress, plants rely on the salt overly sensitive (SOS) pathway. The SOS1, SOS2 and SOS3 proteins are crucial for the maintenance of ion homeostasis and the <i>sos1</i> mutant is hypersensitive to salt stress. <i>Trichoderma harzianum,</i> a beneficial fungus, increases the tolerance of plants to abiotic stresses. We examined the effect of the <i>Trichoderma</i> strain on the performance of the <i>salt overly sensitive</i> (<i>sos1</i>) mutant of Arabidopsis under salt stress. Compared to the isogenic <i>glabra1</i> (<i>gl1</i>) control seedlings, the fresh weight, chlorophyll fluorescence, photosynthetic pigment content and transcript level of genes involved in ROS scavenging were increased in <i>Trichoderma-</i>inoculated <i>sos1</i> plants under 150 mM salt stress<i>. Trichoderma</i> also enhanced the accumulation of the osmolytes proline, alanine, as well as the sucrose and glucose in the salt-stressed <i>sos1</i>, but not <i>gl1</i> mutants, and the accumulation of Na<sup>+</sup> was restricted in the <i>sos1</i> mutant. The beneficial effects of <i>T. harzianum</i> could be attributed to higher colonization rates of the <i>sos1</i> mutant compared to the <i>gl1</i> controls. In conclusion, these findings underscore that the <i>Trichoderma</i> strain activates stronger salt protective responses in the salt-sensitive <i>sos1</i> mutant than in control <i>gl1</i> plants. Therefore, the <i>Trichoderma</i> strain is a valuable tool to investigate how a beneficial endophyte can stimulate salt tolerance responses in the host to promote its performance under stress.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":"11 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00344-024-11474-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Salt stress is one of the major environmental factors that limits crop productivity. To mount an effective response to cope with salt stress, plants rely on the salt overly sensitive (SOS) pathway. The SOS1, SOS2 and SOS3 proteins are crucial for the maintenance of ion homeostasis and the sos1 mutant is hypersensitive to salt stress. Trichoderma harzianum, a beneficial fungus, increases the tolerance of plants to abiotic stresses. We examined the effect of the Trichoderma strain on the performance of the salt overly sensitive (sos1) mutant of Arabidopsis under salt stress. Compared to the isogenic glabra1 (gl1) control seedlings, the fresh weight, chlorophyll fluorescence, photosynthetic pigment content and transcript level of genes involved in ROS scavenging were increased in Trichoderma-inoculated sos1 plants under 150 mM salt stress. Trichoderma also enhanced the accumulation of the osmolytes proline, alanine, as well as the sucrose and glucose in the salt-stressed sos1, but not gl1 mutants, and the accumulation of Na+ was restricted in the sos1 mutant. The beneficial effects of T. harzianum could be attributed to higher colonization rates of the sos1 mutant compared to the gl1 controls. In conclusion, these findings underscore that the Trichoderma strain activates stronger salt protective responses in the salt-sensitive sos1 mutant than in control gl1 plants. Therefore, the Trichoderma strain is a valuable tool to investigate how a beneficial endophyte can stimulate salt tolerance responses in the host to promote its performance under stress.
期刊介绍:
The Journal of Plant Growth Regulation is an international publication featuring original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research on various aspects of plant growth and development using hormonal, physiological, environmental, genetic, biophysical, developmental and/or molecular approaches.
The journal also publishes timely reviews on highly relevant areas and/or studies in plant growth and development, including interdisciplinary work with an emphasis on plant growth, plant hormones and plant pathology or abiotic stress.
In addition, the journal features occasional thematic issues with special guest editors, as well as brief communications describing novel techniques and meeting reports.
The journal is unlikely to accept manuscripts that are purely descriptive in nature or reports work with simple tissue culture without attempting to investigate the underlying mechanisms of plant growth regulation, those that focus exclusively on microbial communities, or deal with the (elicitation by plant hormones of) synthesis of secondary metabolites.