{"title":"On a parabolic equation in microelectromechanical systems with an external pressure","authors":"Lingfeng Zhang, Xiaoliu Wang","doi":"10.1002/mma.10427","DOIUrl":null,"url":null,"abstract":"<p>The parabolic problem \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </msub>\n <mo>−</mo>\n <mi>Δ</mi>\n <mi>u</mi>\n <mo>=</mo>\n <mfrac>\n <mrow>\n <mi>λ</mi>\n <mi>f</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>−</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n <mo>+</mo>\n <mi>P</mi>\n </mrow>\n <annotation>$$ {u}_t-\\Delta u&amp;amp;#x0003D;\\frac{\\lambda f(x)}{{\\left(1-u\\right)}&amp;amp;#x0005E;2}&amp;amp;#x0002B;P $$</annotation>\n </semantics></math> on a bounded domain \n<span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <annotation>$$ \\Omega $$</annotation>\n </semantics></math> of \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>R</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {R}&amp;amp;#x0005E;n $$</annotation>\n </semantics></math> with Dirichlet boundary condition models the microelectromechanical systems (MEMS) device with an external pressure term. In this paper, we classify the behavior of the solutions to this equation. We first show that under certain initial conditions, there exist critical constants \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {P}&amp;amp;#x0005E;{\\ast } $$</annotation>\n </semantics></math> and \n<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {\\lambda}_P&amp;amp;#x0005E;{\\ast } $$</annotation>\n </semantics></math> such that when \n<span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≤</mo>\n <mi>P</mi>\n <mo>≤</mo>\n <msup>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <mspace></mspace>\n <mn>0</mn>\n <mo><</mo>\n <mi>λ</mi>\n <mo>≤</mo>\n <msubsup>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ 0\\le P\\le {P}&amp;amp;#x0005E;{\\ast },0&amp;lt;\\lambda \\le {\\lambda}_P&amp;amp;#x0005E;{\\ast } $$</annotation>\n </semantics></math>, there exists a global solution, while for \n<span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≤</mo>\n <mi>P</mi>\n <mo>≤</mo>\n <msup>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>λ</mi>\n <mo>></mo>\n <msubsup>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ 0\\le P\\le {P}&amp;amp;#x0005E;{\\ast },\\lambda &amp;gt;{\\lambda}_P&amp;amp;#x0005E;{\\ast } $$</annotation>\n </semantics></math> or \n<span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>></mo>\n <msup>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ P&amp;gt;{P}&amp;amp;#x0005E;{\\ast } $$</annotation>\n </semantics></math>, the solution quenches in finite time. The estimates of voltage \n<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {\\lambda}_P&amp;amp;#x0005E;{\\ast } $$</annotation>\n </semantics></math>, quenching time \n<span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation>$$ T $$</annotation>\n </semantics></math>, and pressure term \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {P}&amp;amp;#x0005E;{\\ast } $$</annotation>\n </semantics></math> are investigated. The quenching set \n<span></span><math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n </mrow>\n <annotation>$$ \\varSigma $$</annotation>\n </semantics></math> is proved to be a compact subset of \n<span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <annotation>$$ \\Omega $$</annotation>\n </semantics></math> with an additional condition on \n<span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ f(x) $$</annotation>\n </semantics></math>, provided \n<span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>⊂</mo>\n <msup>\n <mrow>\n <mi>R</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ \\Omega \\subset {R}&amp;amp;#x0005E;n $$</annotation>\n </semantics></math> is a convex bounded set. In particular, if \n<span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <annotation>$$ \\Omega $$</annotation>\n </semantics></math> is radially symmetric, then the origin is the only quenching point. Furthermore, we not only derive the two-sided bound estimate for the quenching solution but also obtain its asymptotic behavior near the quenching time.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 2","pages":"2122-2140"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10427","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The parabolic problem
on a bounded domain
of
with Dirichlet boundary condition models the microelectromechanical systems (MEMS) device with an external pressure term. In this paper, we classify the behavior of the solutions to this equation. We first show that under certain initial conditions, there exist critical constants
and
such that when
, there exists a global solution, while for
or
, the solution quenches in finite time. The estimates of voltage
, quenching time
, and pressure term
are investigated. The quenching set
is proved to be a compact subset of
with an additional condition on
, provided
is a convex bounded set. In particular, if
is radially symmetric, then the origin is the only quenching point. Furthermore, we not only derive the two-sided bound estimate for the quenching solution but also obtain its asymptotic behavior near the quenching time.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.