On a parabolic equation in microelectromechanical systems with an external pressure

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Lingfeng Zhang, Xiaoliu Wang
{"title":"On a parabolic equation in microelectromechanical systems with an external pressure","authors":"Lingfeng Zhang,&nbsp;Xiaoliu Wang","doi":"10.1002/mma.10427","DOIUrl":null,"url":null,"abstract":"<p>The parabolic problem \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </msub>\n <mo>−</mo>\n <mi>Δ</mi>\n <mi>u</mi>\n <mo>=</mo>\n <mfrac>\n <mrow>\n <mi>λ</mi>\n <mi>f</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>−</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n <mo>+</mo>\n <mi>P</mi>\n </mrow>\n <annotation>$$ {u}_t-\\Delta u&amp;amp;amp;#x0003D;\\frac{\\lambda f(x)}{{\\left(1-u\\right)}&amp;amp;amp;#x0005E;2}&amp;amp;amp;#x0002B;P $$</annotation>\n </semantics></math> on a bounded domain \n<span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <annotation>$$ \\Omega $$</annotation>\n </semantics></math> of \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>R</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {R}&amp;amp;amp;#x0005E;n $$</annotation>\n </semantics></math> with Dirichlet boundary condition models the microelectromechanical systems (MEMS) device with an external pressure term. In this paper, we classify the behavior of the solutions to this equation. We first show that under certain initial conditions, there exist critical constants \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {P}&amp;amp;amp;#x0005E;{\\ast } $$</annotation>\n </semantics></math> and \n<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {\\lambda}_P&amp;amp;amp;#x0005E;{\\ast } $$</annotation>\n </semantics></math> such that when \n<span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≤</mo>\n <mi>P</mi>\n <mo>≤</mo>\n <msup>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <mspace></mspace>\n <mn>0</mn>\n <mo>&lt;</mo>\n <mi>λ</mi>\n <mo>≤</mo>\n <msubsup>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ 0\\le P\\le {P}&amp;amp;amp;#x0005E;{\\ast },0&amp;amp;lt;\\lambda \\le {\\lambda}_P&amp;amp;amp;#x0005E;{\\ast } $$</annotation>\n </semantics></math>, there exists a global solution, while for \n<span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≤</mo>\n <mi>P</mi>\n <mo>≤</mo>\n <msup>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>λ</mi>\n <mo>&gt;</mo>\n <msubsup>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ 0\\le P\\le {P}&amp;amp;amp;#x0005E;{\\ast },\\lambda &amp;amp;gt;{\\lambda}_P&amp;amp;amp;#x0005E;{\\ast } $$</annotation>\n </semantics></math> or \n<span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>&gt;</mo>\n <msup>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ P&amp;amp;gt;{P}&amp;amp;amp;#x0005E;{\\ast } $$</annotation>\n </semantics></math>, the solution quenches in finite time. The estimates of voltage \n<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {\\lambda}_P&amp;amp;amp;#x0005E;{\\ast } $$</annotation>\n </semantics></math>, quenching time \n<span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation>$$ T $$</annotation>\n </semantics></math>, and pressure term \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>P</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {P}&amp;amp;amp;#x0005E;{\\ast } $$</annotation>\n </semantics></math> are investigated. The quenching set \n<span></span><math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n </mrow>\n <annotation>$$ \\varSigma $$</annotation>\n </semantics></math> is proved to be a compact subset of \n<span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <annotation>$$ \\Omega $$</annotation>\n </semantics></math> with an additional condition on \n<span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ f(x) $$</annotation>\n </semantics></math>, provided \n<span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>⊂</mo>\n <msup>\n <mrow>\n <mi>R</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ \\Omega \\subset {R}&amp;amp;amp;#x0005E;n $$</annotation>\n </semantics></math> is a convex bounded set. In particular, if \n<span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <annotation>$$ \\Omega $$</annotation>\n </semantics></math> is radially symmetric, then the origin is the only quenching point. Furthermore, we not only derive the two-sided bound estimate for the quenching solution but also obtain its asymptotic behavior near the quenching time.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 2","pages":"2122-2140"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10427","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The parabolic problem u t Δ u = λ f ( x ) ( 1 u ) 2 + P $$ {u}_t-\Delta u&amp;amp;#x0003D;\frac{\lambda f(x)}{{\left(1-u\right)}&amp;amp;#x0005E;2}&amp;amp;#x0002B;P $$ on a bounded domain Ω $$ \Omega $$ of R n $$ {R}&amp;amp;#x0005E;n $$ with Dirichlet boundary condition models the microelectromechanical systems (MEMS) device with an external pressure term. In this paper, we classify the behavior of the solutions to this equation. We first show that under certain initial conditions, there exist critical constants P $$ {P}&amp;amp;#x0005E;{\ast } $$ and λ P $$ {\lambda}_P&amp;amp;#x0005E;{\ast } $$ such that when 0 P P , 0 < λ λ P $$ 0\le P\le {P}&amp;amp;#x0005E;{\ast },0&amp;lt;\lambda \le {\lambda}_P&amp;amp;#x0005E;{\ast } $$ , there exists a global solution, while for 0 P P , λ > λ P $$ 0\le P\le {P}&amp;amp;#x0005E;{\ast },\lambda &amp;gt;{\lambda}_P&amp;amp;#x0005E;{\ast } $$ or P > P $$ P&amp;gt;{P}&amp;amp;#x0005E;{\ast } $$ , the solution quenches in finite time. The estimates of voltage λ P $$ {\lambda}_P&amp;amp;#x0005E;{\ast } $$ , quenching time T $$ T $$ , and pressure term P $$ {P}&amp;amp;#x0005E;{\ast } $$ are investigated. The quenching set Σ $$ \varSigma $$ is proved to be a compact subset of Ω $$ \Omega $$ with an additional condition on f ( x ) $$ f(x) $$ , provided Ω R n $$ \Omega \subset {R}&amp;amp;#x0005E;n $$ is a convex bounded set. In particular, if Ω $$ \Omega $$ is radially symmetric, then the origin is the only quenching point. Furthermore, we not only derive the two-sided bound estimate for the quenching solution but also obtain its asymptotic behavior near the quenching time.

关于带有外部压力的微机电系统中的抛物线方程
带 Dirichlet 边界条件的有界域上的抛物线问题是带有外部压力项的微机电系统 (MEMS) 设备的模型。本文对该方程的解的行为进行了分类。我们首先证明,在某些初始条件下,存在临界常数 和 ,因此当 时,存在全局解,而当 或 时,解在有限时间内淬火。我们研究了电压、淬火时间和压力项的估计值。证明了淬火集是 的紧凑子集,并附加了一个条件,即 ,是一个凸有界集。特别是,如果是径向对称的,则原点是唯一的淬火点。此外,我们不仅推导出了淬火解的双面约束估计值,还得到了它在淬火时间附近的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信