{"title":"Curves defined by a class of discrete operators: Approximation result and applications","authors":"Rosario Corso, Gabriele Gucciardi","doi":"10.1002/mma.10441","DOIUrl":null,"url":null,"abstract":"<p>In approximation theory, classical discrete operators, like generalized sampling, Szász-Mirak'jan, Baskakov, and Bernstein operators, have been extensively studied for scalar functions. In this paper, we look at the approximation of curves by a class of discrete operators, and we exhibit graphical examples concerning several cases. The topic has useful implications about the computer graphics and the image processing: We discuss applications on the approximation and the reconstruction of curves in images.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 2","pages":"2388-2403"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.10441","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10441","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In approximation theory, classical discrete operators, like generalized sampling, Szász-Mirak'jan, Baskakov, and Bernstein operators, have been extensively studied for scalar functions. In this paper, we look at the approximation of curves by a class of discrete operators, and we exhibit graphical examples concerning several cases. The topic has useful implications about the computer graphics and the image processing: We discuss applications on the approximation and the reconstruction of curves in images.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.