Sharp estimates of solution of an elliptic problem on a family of open non‐convex planar sectors

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Abdelaziz Douah, Abdelkader Tami, Mounir Tlemcani
{"title":"Sharp estimates of solution of an elliptic problem on a family of open non‐convex planar sectors","authors":"Abdelaziz Douah, Abdelkader Tami, Mounir Tlemcani","doi":"10.1002/mma.10449","DOIUrl":null,"url":null,"abstract":"Based on partial Fourier series analysis, we adapt on a model case a new approach to classical results obtained in the literature describing the singularities of a family a solutions of a second‐order elliptic problems on open non‐convex planar sectors. The method allows the exhibition of singular and regular frequencies, explicit decomposition, and description of coefficients of singularities of the solution. As a main result, explicit and sharp estimates with respect to the opening angle parameter are obtained via this method. They are not uniform near where corners have opening angle generating a jump of singularity in Sobolev exponent, contrarily to the results obtained for harmonic and/or biharmonic problems on a family of convex planar sectors.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Based on partial Fourier series analysis, we adapt on a model case a new approach to classical results obtained in the literature describing the singularities of a family a solutions of a second‐order elliptic problems on open non‐convex planar sectors. The method allows the exhibition of singular and regular frequencies, explicit decomposition, and description of coefficients of singularities of the solution. As a main result, explicit and sharp estimates with respect to the opening angle parameter are obtained via this method. They are not uniform near where corners have opening angle generating a jump of singularity in Sobolev exponent, contrarily to the results obtained for harmonic and/or biharmonic problems on a family of convex planar sectors.
开放非凸平面扇形族上椭圆问题解法的锐估计
基于偏傅里叶级数分析,我们在一个模型案例中采用了一种新方法,来处理文献中获得的描述开放非凸平面扇形上二阶椭圆问题解的奇异性的经典结果。这种方法可以显示奇异频率和规则频率、明确分解和描述解的奇异性系数。其主要结果是,通过该方法获得了关于开口角参数的明确而尖锐的估计值。与在凸平面扇形系列上的谐波和/或双谐波问题中获得的结果相反,在角的开口角产生索博廖夫指数奇异性跃迁的附近,这些估计值并不均匀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信