A family of quadrature formulas with their error bounds for convex functions and applications

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Muhammad Toseef, Abdul Mateen, Muhammad Aamir Ali, Zhiyue Zhang
{"title":"A family of quadrature formulas with their error bounds for convex functions and applications","authors":"Muhammad Toseef, Abdul Mateen, Muhammad Aamir Ali, Zhiyue Zhang","doi":"10.1002/mma.10460","DOIUrl":null,"url":null,"abstract":"In numerical analysis, the quadrature formulas serve as a pivotal tool for approximating definite integrals. In this paper, we introduce a family of quadrature formulas and analyze their associated error bounds for convex functions. The main advantage of these new error bounds is that from these error bounds, we can find the error bounds of different quadrature formulas. This work extends the traditional quadrature formulas such as the midpoint formula, trapezoidal formula, Simpson's formula, and Boole's formula. We also use the power mean and Hölder's integral inequalities to find more general and sharp bounds. Furthermore, we give numerical example and applications to quadrature formulas of the newly established inequalities.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In numerical analysis, the quadrature formulas serve as a pivotal tool for approximating definite integrals. In this paper, we introduce a family of quadrature formulas and analyze their associated error bounds for convex functions. The main advantage of these new error bounds is that from these error bounds, we can find the error bounds of different quadrature formulas. This work extends the traditional quadrature formulas such as the midpoint formula, trapezoidal formula, Simpson's formula, and Boole's formula. We also use the power mean and Hölder's integral inequalities to find more general and sharp bounds. Furthermore, we give numerical example and applications to quadrature formulas of the newly established inequalities.
凸函数的一系列正交公式及其误差范围和应用
在数值分析中,正交公式是逼近定积分的重要工具。本文介绍了一系列正交公式,并分析了它们对凸函数的相关误差边界。这些新误差边界的主要优势在于,从这些误差边界中,我们可以找到不同正交公式的误差边界。这项工作扩展了传统的正交公式,如中点公式、梯形公式、辛普森公式和布尔公式。我们还利用幂均值和荷尔德积分不等式找到了更普遍、更尖锐的界限。此外,我们还给出了新建立的不等式的正交公式的数值示例和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信