Mahwash Mahar Gul, Khuram Shahzad Ahmad, Andrew Guy Thomas, Mohamed A. Habila
{"title":"Empowering progress: unraveling the promising capabilities of Cu2S:ZnS:NiS2 trimetal sulphide thin films","authors":"Mahwash Mahar Gul, Khuram Shahzad Ahmad, Andrew Guy Thomas, Mohamed A. Habila","doi":"10.1007/s11706-024-0695-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the synthesis and characterization of a thin film comprising of trimetallic sulphide, Cu<sub>2</sub>S:ZnS:NiS<sub>2</sub>. The fabrication process involved the utilization of diethyldithiocarbamate as a sulfur source, employing physical vapor deposition. A range of analytical techniques were employed to elucidate the material’s structure, morphology, and optical characteristics. The thin film exhibited a well-defined crystalline structure with an average crystallite size of 33 nm. X-ray photoelectron spectroscopy provided distinct core level peaks associated with Cu 2p, Zn 2p, Ni 2p, and S 2p. The electrochemical properties were assessed through voltammetry measurements, which demonstrated an impressive specific capacitive of 797 F·g<sup>−1</sup>. The thin film demonstrated remarkable stability over multiple cycles, establishing it as a highly promising candidate for diverse energy storage applications. In addition, comprehensive investigations were carried out to assess the photocatalytic performance of the fabricated material, particularly its efficacy in the degradation of diverse environmental pollutants. These notable findings emphasize the versatility of trimetal sulphide thin films, expanding their potential beyond energy storage and opening avenues for further research and technological advancements in fields including photocatalysis and beyond.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0695-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the synthesis and characterization of a thin film comprising of trimetallic sulphide, Cu2S:ZnS:NiS2. The fabrication process involved the utilization of diethyldithiocarbamate as a sulfur source, employing physical vapor deposition. A range of analytical techniques were employed to elucidate the material’s structure, morphology, and optical characteristics. The thin film exhibited a well-defined crystalline structure with an average crystallite size of 33 nm. X-ray photoelectron spectroscopy provided distinct core level peaks associated with Cu 2p, Zn 2p, Ni 2p, and S 2p. The electrochemical properties were assessed through voltammetry measurements, which demonstrated an impressive specific capacitive of 797 F·g−1. The thin film demonstrated remarkable stability over multiple cycles, establishing it as a highly promising candidate for diverse energy storage applications. In addition, comprehensive investigations were carried out to assess the photocatalytic performance of the fabricated material, particularly its efficacy in the degradation of diverse environmental pollutants. These notable findings emphasize the versatility of trimetal sulphide thin films, expanding their potential beyond energy storage and opening avenues for further research and technological advancements in fields including photocatalysis and beyond.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.