{"title":"A general construction of family algebraic structures","authors":"Loïc Foissy, Dominique Manchon, Yuanyuan Zhang","doi":"10.1007/s11005-024-01851-7","DOIUrl":null,"url":null,"abstract":"<div><p>We give a general account of family algebras over a finitely presented linear operad. In a family algebra, each operation of arity <i>n</i> is replaced by a family of operations indexed by \n<span>\\(\\Omega ^n\\)</span>, where \n<span>\\(\\Omega \\)</span> is a set of parameters. We show that the operad, together with its presentation, naturally defines an algebraic structure on the set of parameters, which in turn is used in the description of the family version of the relations between operations. The examples of dendriform and duplicial family algebras (hence with two parameters) and operads are treated in detail, as well as the pre-Lie family case. Finally, free one-parameter duplicial family algebras are described, together with the extended duplicial semigroup structure on the set of parameters.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01851-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We give a general account of family algebras over a finitely presented linear operad. In a family algebra, each operation of arity n is replaced by a family of operations indexed by
\(\Omega ^n\), where
\(\Omega \) is a set of parameters. We show that the operad, together with its presentation, naturally defines an algebraic structure on the set of parameters, which in turn is used in the description of the family version of the relations between operations. The examples of dendriform and duplicial family algebras (hence with two parameters) and operads are treated in detail, as well as the pre-Lie family case. Finally, free one-parameter duplicial family algebras are described, together with the extended duplicial semigroup structure on the set of parameters.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.