Integrating Air-Source Heat Pumps into the Demand-Side Fast Frequency Response Service: A Study Based on Thermal Dynamic Uncertainty

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Ruihao Song;Vladimir Terzija;Thomas Hamacher;Vedran S. Perić
{"title":"Integrating Air-Source Heat Pumps into the Demand-Side Fast Frequency Response Service: A Study Based on Thermal Dynamic Uncertainty","authors":"Ruihao Song;Vladimir Terzija;Thomas Hamacher;Vedran S. Perić","doi":"10.1109/TSTE.2024.3456068","DOIUrl":null,"url":null,"abstract":"Fast frequency response services, designed to quickly balance the electrical grid within seconds, have a critical importance for managing sudden anomalies in low-inertia power systems. Battery systems often serve as versatile prosumers on the demand side to facilitate fast frequency response services. However, the nature of fast frequency response services leads to a highly fluctuating power profile for batteries, which can shorten their lifetime. In contrast, distributed air-source heat pumps in residential areas have a substantial untapped potential to support fast frequency response services. This paper seeks to integrate them into the existing services through a controller upgrade. We analyze the influence of air-source heat pumps' inherent complex thermal dynamics on fast frequency response services, revealing control challenges posed by unpredictable operating condition changes. Such a challenge is tackled with a standard droop control structure which is tuned through \n<inline-formula><tex-math>${{H}_\\infty }$</tex-math></inline-formula>\n method, guaranteeing practical and stable operations within the permitted operating condition range. Finally, the proposed fast frequency response service scheme is tested through multiphysics simulations on a small-size low-inertia residential microgrid. The obtained results strongly supported the proposed new service.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"323-335"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669175","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669175/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Fast frequency response services, designed to quickly balance the electrical grid within seconds, have a critical importance for managing sudden anomalies in low-inertia power systems. Battery systems often serve as versatile prosumers on the demand side to facilitate fast frequency response services. However, the nature of fast frequency response services leads to a highly fluctuating power profile for batteries, which can shorten their lifetime. In contrast, distributed air-source heat pumps in residential areas have a substantial untapped potential to support fast frequency response services. This paper seeks to integrate them into the existing services through a controller upgrade. We analyze the influence of air-source heat pumps' inherent complex thermal dynamics on fast frequency response services, revealing control challenges posed by unpredictable operating condition changes. Such a challenge is tackled with a standard droop control structure which is tuned through ${{H}_\infty }$ method, guaranteeing practical and stable operations within the permitted operating condition range. Finally, the proposed fast frequency response service scheme is tested through multiphysics simulations on a small-size low-inertia residential microgrid. The obtained results strongly supported the proposed new service.
将空气源热泵纳入需求方快速频率响应服务:基于热动态不确定性的研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信