{"title":"Preserving Normal Power Curve Data With Sparse Density via Wind Speed-Power Correlation Trend Cleaning Method","authors":"Hongrui Li;Shuangxin Wang;Jiading Jiang;Jun Liu;Junmei Ou;Ziang Zhou","doi":"10.1109/TSTE.2024.3459005","DOIUrl":null,"url":null,"abstract":"Stochastic wind conditions and curtailment lead to a sparse distribution of normal data compared to outliers on the Wind Power Curve (WPC). This results in the removal of sparse normal data during the data cleaning process, hampering short-term wind power assessment and forecasting. To address this issue, this paper proposes a decision boundary construction method that utilizes the wind speed-power correlation trend to retain normal WPC data. First, leveraging the positive correlation between wind speed and power, an incremental trend search strategy is used to obtain the trend curve. Building on this curve, a scatter motion trend algorithm is introduced to eliminate densely clustered curtailed power data. Finally, a kernel function-based 3-sigma boundary construction method is suggested to further reduce the influence of remaining clustered outliers on decision boundaries. The proposed method is compared to eight advanced algorithms using data from 17 wind turbines across three wind farms, demonstrating superior performance, especially in scenarios with sparse normal data.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"365-376"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10678883/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Stochastic wind conditions and curtailment lead to a sparse distribution of normal data compared to outliers on the Wind Power Curve (WPC). This results in the removal of sparse normal data during the data cleaning process, hampering short-term wind power assessment and forecasting. To address this issue, this paper proposes a decision boundary construction method that utilizes the wind speed-power correlation trend to retain normal WPC data. First, leveraging the positive correlation between wind speed and power, an incremental trend search strategy is used to obtain the trend curve. Building on this curve, a scatter motion trend algorithm is introduced to eliminate densely clustered curtailed power data. Finally, a kernel function-based 3-sigma boundary construction method is suggested to further reduce the influence of remaining clustered outliers on decision boundaries. The proposed method is compared to eight advanced algorithms using data from 17 wind turbines across three wind farms, demonstrating superior performance, especially in scenarios with sparse normal data.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.