Causal Mechanism-Enabled Zero-Label Learning for Power Generation Forecasting of Newly-Built PV Sites

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Pengfei Zhao;Weihao Hu;Di Cao;Rui Huang;Xiawei Wu;Qi Huang;Zhe Chen
{"title":"Causal Mechanism-Enabled Zero-Label Learning for Power Generation Forecasting of Newly-Built PV Sites","authors":"Pengfei Zhao;Weihao Hu;Di Cao;Rui Huang;Xiawei Wu;Qi Huang;Zhe Chen","doi":"10.1109/TSTE.2024.3459415","DOIUrl":null,"url":null,"abstract":"Power forecasting of newly built photovoltaic (PV) sites faces huge challenges owing to the lack of sufficient training samples. To this end, this paper proposes an unsupervised zero-label learning method for power generation forecasting of newly built PV sites without relying on any historical power output data. The main idea is to extract invariant causal structures across different PV sites and leverage this causality to enhance the power forecasting performance on the newly built ones. In particular, a causality-enabled domain adaptation network (CEDAN) is designed to capture the causal mechanism of PV generation from the multiple fine-grain segments of time-lagged data. It relaxes the causal relationships to an associative structure which is further concretized as attention score vectors through the designed intra- and inter-variable attention mechanisms. To quantify the distribution discrepancies between source and target domain causal structures, a specific domain adaptation loss function is designed for the optimization of CEDAN. It is further extended to a domain adaptation quantile loss to handle the uncertainties of PV power output. By jointly minimizing the domain adaptation loss and power forecasting error/conditional quantile loss, an invariant power generation causal mechanism across data domains for a newly built PV site can be learned. This allows the proposed method to achieve accurate and highly generalized power generation forecasting for newly built PV sites without relying on labeled data. Extensive experiments utilizing real PV generation data demonstrate that the proposed method surpasses state-of-the-art transfer learning methods by 7.57% at least in deterministic forecasting and 8.37% at least in probabilistic forecasting.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"392-406"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10679087/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Power forecasting of newly built photovoltaic (PV) sites faces huge challenges owing to the lack of sufficient training samples. To this end, this paper proposes an unsupervised zero-label learning method for power generation forecasting of newly built PV sites without relying on any historical power output data. The main idea is to extract invariant causal structures across different PV sites and leverage this causality to enhance the power forecasting performance on the newly built ones. In particular, a causality-enabled domain adaptation network (CEDAN) is designed to capture the causal mechanism of PV generation from the multiple fine-grain segments of time-lagged data. It relaxes the causal relationships to an associative structure which is further concretized as attention score vectors through the designed intra- and inter-variable attention mechanisms. To quantify the distribution discrepancies between source and target domain causal structures, a specific domain adaptation loss function is designed for the optimization of CEDAN. It is further extended to a domain adaptation quantile loss to handle the uncertainties of PV power output. By jointly minimizing the domain adaptation loss and power forecasting error/conditional quantile loss, an invariant power generation causal mechanism across data domains for a newly built PV site can be learned. This allows the proposed method to achieve accurate and highly generalized power generation forecasting for newly built PV sites without relying on labeled data. Extensive experiments utilizing real PV generation data demonstrate that the proposed method surpasses state-of-the-art transfer learning methods by 7.57% at least in deterministic forecasting and 8.37% at least in probabilistic forecasting.
基于因果机制的零标签学习用于新建光伏发电站的发电量预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信